
Research Report

Mining Generalized Association Rules

Ramakrishnan Srikant

Rakesh Agrawal

IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,
its distribution outside of IBM prior to publication should be limited to peer communications and speci�c requests. After outside
publication, requests should be �lled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

IBM
Research Division
Yorktown Heights, New York � San Jose, California � Zurich, Switzerland



Mining Generalized Association Rules

Ramakrishnan Srikant�

Rakesh Agrawal

IBM Research Division
Almaden Research Center
650 Harry Road
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ABSTRACT: We introduce the problem of mining generalized association rules. Given a large
database of transactions, where each transaction consists of a set of items, and a taxonomy (is-a
hierarchy) on the items, we �nd associations between items at any level of the taxonomy. For
example, given a taxonomy that says that jackets is-a outerwear is-a clothes, we may infer a rule
that \people who buy outerwear tend to buy shoes". This rule may hold even if rules that \people
who buy jackets tend to buy shoes", and \people who buy clothes tend to buy shoes" do not hold.
An obvious solution to the problem is to add all ancestors of each item in a transaction to the
transaction, and then run any of the algorithms for mining association rules on these \extended
transactions". However, this \Basic" algorithm is not very fast; we present two algorithms, Cumu-
late and EstMerge, which run 2 to 5 times faster than Basic (and more than 100 times faster on
one real-life dataset). We also present a new interest-measure for rules which uses the information
in the taxonomy. Given a user-speci�ed \minimum-interest-level", this measure prunes a large
number of redundant rules; 40% to 60% of all the rules were pruned on two real-life datasets.

�Also, Department of Computer Science, University of Wisconsin, Madison.



1. Introduction

Data mining, also known as knowledge discovery in databases, has been recognized as a new

area for database research. The area can be de�ned as e�ciently discovering interesting rules from

large collections of data.

The problem of mining association rules was introduced in [AIS93]. Given a set of transactions,

where each transaction is a set of items, an association rule is an expression X ) Y , where X and

Y are sets of items. The intuitive meaning of such a rule is that transactions in the database which

contain the items in X tend to also contain the items in Y . An example of such a rule might be

that 98% of customers who purchase tires and auto accessories also buy some automotive services;

here 98% is called the con�dence of the rule. The support of the rule X ) Y is the percentage

of transactions that contain both X and Y . The problem of mining association rules is to �nd all

rules that satisfy a user-speci�ed minimum support and minimum con�dence. Applications include

cross-marketing, attached mailing, catalog design, loss-leader analysis, store layout, and customer

segmentation based on buying patterns.

In most cases, taxonomies (is-a hierarchies) over the items are available. An example of a

taxonomy is shown in Figure 1: this taxonomy says that Jacket is-a Outerwear, Ski Pants is-a

Outerwear, Outerwear is-a Clothes, etc. Users are interested in generating rules that span di�erent

levels of the taxonomy. For example, we may infer a rule that people who buy Outerwear tend to

buy Hiking Boots from the fact that people bought Jackets with Hiking Boots and and Ski Pants

with Hiking Boots. However, the support for the rule \Outerwear) Hiking Boots" may not be the

sum of the supports for the rules \Jackets) Hiking Boots" and \Ski Pants) Hiking Boots" since

some people may have bought Jackets, Ski Pants and Hiking Boots in the same transaction. Also,

\Outerwear ) Hiking Boots" may be a valid rule, while \Jackets ) Hiking Boots" and \Clothes

) Hiking Boots" may not. The former may not have minimum support, and the latter may not

have minimum con�dence.

Earlier work on association rules [AIS93] [AS94] [HS95] [MTV94] [PCY95] did not consider the

presence of taxonomies and restricted the items in association rules to the leaf-level items in the

taxonomy. However, �nding rules across di�erent levels of the taxonomy is valuable since:

� Rules at lower levels may not have minimum support. Few people may buy Jackets with

Hiking Boots, but many people may buy Outerwear with Hiking Boots. Thus many signi�cant

associations may not be discovered if we restrict rules to items at the leaves of the taxonomy.

Since department stores or supermarkets typically have hundreds of thousands of items, the

support for rules involving only leaf items (typically UPC or SKU codes) tends to be extremely
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Clothes
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Ski Pants

ShirtsOuterwear Shoes Hiking Boots

Figure 1: Example of a Taxonomy

small.

� Taxonomies can be used to prune uninteresting or redundant rules. We will discuss this

further in Section 2.1.

Multiple taxonomies may be present. For example, there could be a taxonomy for the price of

items (cheap, expensive, etc.), and another for the category. Multiple taxonomies may be modeled

as a single taxonomy which is a DAG (directed acyclic graph). A common application that uses

multiple taxonomies is loss-leader analysis. In addition to the usual taxonomy which classi�es items

into brands, categories, product groups, etc., there is a second taxonomy where items which are on

sale are considered to be children of a \items-on-sale" category, and users look for rules containing

the \items-on-sale" item.

In this paper, we introduce the problem of mining generalized association rules. Informally,

given a set of transactions and a taxonomy, we want to �nd association rules where the items

may be from any level of the taxonomy. We give a formal problem description in Section 2. One

drawback users experience in applying association rules to real problems is that they tend to get a

lot of uninteresting or redundant rules along with the interesting rules. We introduce an interest-

measure that uses the taxonomy to prune redundant rules.

An obvious solution to the problem is to replace each transaction T with an \extended trans-

action" T 0, where T 0 contains all the items in T as well as all the ancestors of each items in T .

For example, if the transaction contained Jackets, we would add Outerwear and Clothes to get the

extended-transaction. We can then run any of the algorithms for mining association rules [AIS93]

[AS94] [HS95] [MTV94] [PCY95] on the extended transactions to get generalized association rules.

However, this \Basic" algorithm is not very fast; two more sophisticated algorithms that we propose

run 2 to 5 times faster than Basic (and more than 100 times faster on one real-life dataset).

We describe the Basic algorithm and our two algorithms in Section 3, and evaluate their per-

formance on both synthetic and real-life data in Section 4. Finally, we summarize our work and

conclude in Section 5.
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2. Problem Statement

Let I = fi1; i2; . . . ; img be a set of literals, called items. Let T be a directed acyclic graph on

the literals. An edge in T represents an is-a relationship, and T represents a set of taxonomies.

If there is an edge in T from p to c, we call p a parent of c and c a child of p. (p represents a

generalization of c.) We model the taxonomy as a DAG rather than a forest to allow for multiple

taxonomies.

We use lower case letters to denote items and upper case letters for sets of items (itemsets).

We call bx an ancestor of x (and x a descendant of bx) if there is an edge from bx to x in the

transitive-closure of T . Note that a node is not an ancestor of itself, since the graph is acyclic.

Let D be a set of transactions, where each transaction T is a set of items such that T � I.

(While we expect the items in T to be leaves in T , we do not require this.) We say that a transaction

T supports an item x 2 I if x is in T or x is an ancestor of some item in T . We say that a transaction

T supports X � I if T supports every item in X .

A generalized association rule is an implication of the form X ) Y , where X � I, Y � I,

X \ Y = ;, and no item in Y is an ancestor of any item in X . The rule X ) Y holds in the

transaction set D with con�dence c if c% of transactions in D that support X also support Y . The

rule X ) Y has support s in the transaction set D if s% of transactions in D support X [ Y . The

reason for the condition that no item in Y should be an ancestor of any item in X is that a rule of

the form \x ) ancestor(x)" is trivially true with 100% con�dence, and hence redundant. We call

these rules generalized association rules because both X and Y can contain items from any level of

the taxonomy T , a possibility not entertained by the formalism introduced in [AIS93].

Problem Statement (Tentative). Given a set of transactions D and a set of taxonomies T , the

problem of mining generalized association rules is to discover all rules that have support and con-

�dence greater than the user-speci�ed minimum support (called minsup) and minimum con�dence

(called minconf ) respectively.

This de�nition has the problem that many \redundant" rules may be found. We will formalize

the notion of redundancy and modify the problem statement accordingly in Section 2.1. (We

introduce the tentative problem statement here in order to explain redundancy.)

Example. Let I = fFootwear, Shoes, Hiking Boots, Clothes, Outerwear, Jackets, Ski Pants,

Shirtsg and T the taxonomy shown in Figure 1. Consider the database shown in Figure 2. Let

minsup be 30% (that is, 2 transactions) and minconf 60%. Then the sets of items with minimum
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Database D

Transaction Items Bought

100 Shirt
200 Jacket, Hiking Boots
300 Ski Pants, Hiking Boots
400 Shoes
500 Shoes
600 Jacket

Taxonomy T

Clothes

Jackets

Footwear

Ski Pants

ShirtsOuterwear Shoes Hiking Boots

Frequent Itemsets

Itemset Support

f Jacket g 2
f Outerwear g 3
f Clothes g 4
f Shoes g 2
f Hiking Boots g 2
f Footwear g 4
f Outerwear, Hiking Boots g 2
f Clothes, Hiking Boots g 2
f Outerwear, Footwear g 2
f Clothes, Footwear g 2

Rules

Rule Support Conf.

Outerwear ) Hiking Boots 33% 66.6%
Outerwear ) Footwear 33% 66.6%
Hiking Boots ) Outerwear 33% 100%
Hiking Boots ) Clothes 33% 100%

Figure 2: Example

support (frequent itemsets), and the rules corresponding to the these itemsets are shown in Figure 2.

Note that the rules \Ski Pants ) Hiking Boots" and \Jackets ) Hiking Boots" do not have

minimum support, but the rule \Outerwear ) Hiking Boots" does.

Observation. Let Pr(X) denote the probability that all the items in X are contained in a trans-

action. Then support(X ) Y ) = Pr(X [ Y ) and con�dence(X ) Y ) = Pr(Y j X). (Note that

Pr(X [ Y ) is the probability that all the items in X [ Y are present in the transaction.)

If a set fx,yg has minimum support, so do fx,byg, fbx,yg and fbx,byg. (bx denote an ancestor

of x). However if the rule x ) y has minimum support and con�dence, only the rule x ) by is

guaranteed to have both minimum support and con�dence. While the rules bx) y and bx) by will

have minimum support, they may not have minimum con�dence.

The support for an item in the taxonomy is not equal to the sum of the supports of its children,

since several of the children could be present in a single transaction. Hence we cannot directly infer

rules about items at higher levels of the taxonomy from rules about the leaves.
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2.1. Interesting Rules

Previous work on quantifying the \usefulness" or \interest" of a rule focussed on how much

the support of a rule was more than the expected support based on the support of the antecedent

and consequent. In [PS91], Piatetsky-Shapiro argues that a rule X ) Y is not interesting if

support(X ) Y ) � support(X)� support(Y ). We implemented this idea, and used the chi-square

value to check if the rule was statistically signi�cant. However, this measure did not prune many

rules; on two real-life datasets (described in Section 4.5), less than 1% of the rules were found to

be redundant (not statistically signi�cant). In this section, we use the information in taxonomies

to derive a new interest measure that prunes out 40% to 60% of the rules as \redundant" rules.

To motivate our approach, consider the rule

Milk ) Cereal (8% support, 70% con�dence)

If \Milk" is a parent of \Skim Milk", and about a quarter of sales of \Milk" are \Skim Milk", we

would expect the rule

Skim Milk ) Cereal

to have 2% support and 70% con�dence. If the actual support and con�dence for \Skim Milk )

Cereal" are around 2% and 70% respectively, the rule can be considered redundant since it does not

convey any additional information and is less general than the �rst rule. We capture this notion

of \interest" by saying that we only want to �nd rules whose support is more than R times the

expected value or whose con�dence is more than R times the expected value, for some user-speci�ed

constant R.1 We formalize the above intuition below.

We call bZ an ancestor of Z (where Z; bZ are sets of items such that Z; bZ � I) if we can getbZ from Z by replacing one or more items in Z with their ancestors and Z and bZ have the same

number of items. (The reason for the latter condition is that it is not meaningful to compute

the expected support of Z from bZ unless they have the same number of items. For instance, the

1We can easily enhance this de�nition to say that we want to �nd rules with minimum support whose support (or
con�dence) is either more or less than the expected value. However, many rules whose support is less than expected
will not have minimum support. In fact, the more the deviation from the expected value, the less the support
for the rule. So the most interesting rules may not have minimum support. (The same applies for con�dence.)
Suppose we wanted to �nd all rules whose support is less than expected, irrespective of minimum support. Consider
a \typical" database with 50,000 items, an average of 5 items per transaction and ten million transactions. The
average probability that an item is present in a transaction is 1/10,000; that any two items are present in the same
transaction 1/100,000,000. Hence, on average, the expected number of transactions where two speci�c items are
bought together is just 0.1. There may be millions of rules which say that two items are never bought together, and
these rules would not even be signi�cant.
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support for fClothesg does give any clue about the expected support for fOuterwear, Shirtsg.) We

call the rules bX ) Y , bX ) bY or X ) bY ancestors of the rule X ) Y . Given a set of rules, we callbX ) bY a close ancestor of X ) Y if there is no rule X 0 ) Y 0 such that X 0 ) Y 0 is an ancestor of

X ) Y and bX ) bY is an ancestor of X 0 ) Y 0. (Similar de�nitions apply for X ) bY and bX ) Y .)

Consider a rule X ) Y , and let Z = X [ Y . The support of Z will be the same as the support

of the rule X ) Y . Let EbZ [Pr(Z)] denote the \expected" value of Pr(Z) given Pr( bZ), where bZ is

an ancestor of Z. Let Z = fz1; . . . ; zng and bZ = f bz1; . . . ; bzj ; zj+1; . . . ; zng, 1 � j � n, where bzi is
an ancestor of zi. Then we de�ne

EbZ [Pr(Z)] = Pr(z1)

Pr( bz1) � � � � � Pr(zj)

Pr( bzj) � Pr( bZ):
to be the expected value of Pr(Z) given the itemset bZ.2

Similarly, let E bX)bY [Pr(Y jX)] denote the \expected" con�dence of the rule X ) Y given the

rule bX ) bY . Let Y = fy1; . . . ; yng and bY = fcy1; . . . ; byj ; yj+1; . . . ; yng, 1 � j � n, where byi is an
ancestor of yi. Then we de�ne

E bX)bY [Pr(Y jX)] =
Pr(y1)

Pr(cy1) � � � � �
Pr(yj)

Pr( byj) � Pr( bY j bX)

Note that E bX)Y
[Pr(Y jX)] = Pr(Y j bX)].

We call a rule X ) Y R-interesting w.r.t an ancestor bX ) bY if the support of the rule X ) Y

is R times the expected support based on bX ) bY , or the con�dence is R times the expected

con�dence based on bX ) bY .
De�nition of Interesting Rules. Given a set of rules S and a minimum interest R, a rule

X ) Y is interesting (in S) if it has no ancestors or it is R-interesting with respect to its close

ancestors among its interesting ancestors. We say that an rule X ) Y is partially interesting (in

S) if it has no ancestors or is R-interesting with respect to at least one close ancestor among its

interesting ancestors.

We motivate the reason for only considering close ancestors among all interesting ancestors with

an example. Consider the rules shown in Figure 3. The support for the items in the antecedent

are shown alongside. Assume we have the same taxonomy as in the previous example. Rule 1 has

2Alternate de�nitions are possible. For example, we could de�ne:

EbZ [Pr(Z)] = Pr(fz1; . . . ; zjg)

Pr(fbz1; . . . ; bzjg) � Pr(bZ):
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Rule # Rule Support

1 \Clothes ) Footwear" 10
2 \Outerwear ) Footwear" 8
3 \Jackets ) Footwear" 4

Item Support

Clothes 5
Outerwear 2
Jackets 1

Figure 3: Example - Interest

no ancestors and is hence interesting. The support for rule 2 is twice the expected support based

on rule 1, and is thus interesting. The support for rule 3 is exactly the expected support based on

rule 2, but twice the support based on rule 1. We do not want consider rule 3 to be interesting

since its support can be predicted based on rule 2, even though its support is more than expected

if we ignore rule 2 and look at rule 1.

2.2. Problem Statement

Given a set of transactions D and a user-speci�ed minimum interest (called min-interest), the

problem of mining association rules with taxonomies is to �nd all interesting association rules that

have support and con�dence greater than the user-speci�ed minimum support (called minsup) and

minimum con�dence (called minconf ) respectively.

For some applications, we may want to �nd partially interesting rules rather than just interesting

rules. Note that if min-interest = 0, all rules are found, regardless of interest.

3. Algorithms

The problem of discovering generalized association rules can be decomposed into three parts:

1. Find all sets of items (itemsets) whose support is greater than the user-speci�ed minimum

support. Itemsets with minimum support are called frequent itemsets.3

2. Use the frequent itemsets to generate the desired rules. The general idea is that if, say,

ABCD and AB are frequent itemsets, then we can determine if the rule AB ) CD holds by

computing the ratio conf = support(ABCD)/support(AB). If conf � minconf, then the rule

holds. (The rule will have minimum support because ABCD is frequent.)

3. Prune all uninteresting rules from this set.

3In earlier papers [AIS93] [AS94], itemsets with minimum support were called large itemsets. However, some
readers associated \large" with the number of items in the itemset, rather than its support. So we are switching the
terminology to frequent itemsets.
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k-itemset An itemset having k items.
Lk Set of frequent k-itemsets (those with minimum support).
Ck Set of candidate k-itemsets (potentially frequent itemsets).
T Taxonomy

Figure 4: Notation

In the rest of this section, we look at algorithms for �nding all frequent itemsets where the

items can be from any level of the taxonomy. Given the frequent itemsets, the algorithm in [AIS93]

[AS94] can be used to generate rules. We �rst describe the obvious approach for �nding frequent

itemsets, and then present our two algorithms.

3.1. Algorithm Basic

Consider the problem of deciding whether a transaction T supports an itemset X . If we take

the raw transaction, this involves checking for each item x 2 X whether x or some descendant of

x is present in the transaction. The task become much simpler if we �rst add all the ancestors of

each item in T to T ; let us call this extended transaction T 0. Now T supports X if and only if T 0 is

a superset of X . Hence a straight-forward way to �nd generalized association rules would be to run

any of the algorithms for �nding association rules from [AIS93] [AS94] [HS95] [MTV94] [PCY95]

on the extended transactions. We discuss below the generalization of the Apriori algorithm given

in [AS94]. Figure 5 gives an overview of the algorithm, using the notation in Figure 4.

The �rst pass of the algorithm simply counts item occurrences to determine the frequent 1-

itemsets. Note that items in the itemsets can come from the leaves of the taxonomy or from

interior nodes. A subsequent pass, say pass k, consists of two phases. First, the frequent itemsets

Lk�1 found in the (k�1)th pass are used to generate the candidate itemsets Ck , using the apriori

candidate generation function described in the next paragraph. Next, the database is scanned and

the support of candidates in Ck is counted. For fast counting, we need to e�ciently determine the

candidates in Ck that are contained in a given transaction t. We reuse the hash-tree data structure

described in [AS94] for this purpose.4

4Note that in the second-pass, we use a specialized version of the hash-tree, as was done in [AS94]. Since C2 is
L1 �L1, we �rst generate a mapping from items to integers, such that large items are mapped to contiguous integers
and non-large items to 0. We now allocate an array of jL1j pointers, where each element points to another array of
upto jL1j elements. Each element of the latter array corresponds to a candidate in C2, and will contain the support
count for that candidate. The �rst array corresponds to the hash-table in the �rst level of the hash-tree, and the
set of second-level arrays to the hash-tables in the second level of the hash-tree. This specialized structure has two
advantages. First, it uses only 4 bytes of memory per candidate, since only the support count for the candidate is
stored. (We know that count[i][j] corresponds to candidate (i, j), and so we need not explicitly store the items i and
j with the count.) Second, we avoid the overhead of function calls since we can just do a two-level for-loop over
each transaction. If there isn't enough memory to generate this structure for all candidates, we generate part of the
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L1 := ffrequent 1-itemsetsg;
k := 2; // k represents the pass number
while ( Lk�1 6= ; ) do
begin

Ck := New candidates of size k generated from Lk�1.
forall transactions t 2 D do

begin

Add all ancestors of each item in t to t, removing any duplicates.
Increment the count of all candidates in Ck that are contained in t.

end

Lk := All candidates in Ck with minimum support.
k := k + 1;

end

Answer :=
S
k
Lk;

Figure 5: Algorithm Basic

Candidate Generation. Given Lk�1, the set of all frequent (k�1)-itemsets, we want to generate

a superset of the set of all frequent k-itemsets. Candidates may include leaf-level items as well as

interior nodes in the taxonomy. The intuition behind this procedure is that if an itemset X has

minimum support, so do all subsets of X . For simplicity, assume the items in each itemset are kept

sorted in lexicographic order. First, in the join step, we join Lk�1 with Lk�1:

insert into Ck

select p.item1, p.item2, ..., p.itemk�1, q.itemk�1

from Lk�1 p, Lk�1 q

where p.item1 = q.item1, . . ., p.itemk�2 = q.itemk�2, p.itemk�1 < q.itemk�1;

Next, in the prune step, we delete all itemsets c 2 Ck such that some (k�1)-subset of c is not in

Lk�1.

3.2. Algorithm Cumulate

We add several optimizations to the Basic algorithm to develop the algorithm \Cumulate".

The name indicates that all itemsets of a certain size are counted in one pass, unlike the \Stratify"

algorithm in Section 3.3.

1. Filtering the ancestors added to transactions. We do not have to add all ancestors of

the items in a transaction t to t. Instead, we just need to add ancestors that are in one (or

more) of the candidate itemsets being counted in the current pass. In fact, if the original

item is not in any of the itemsets, it can be dropped from the transaction.

structure and make multiple passes over the data.
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For example, assume the parent of \Jacket" is \Outerwear", and the parent of \Outerwear" is

\Clothes". Let fClothes, Shoesg be the only itemset being counted. Then, in any transaction

containing Jacket, we simply replace Jacket by Clothes. We do not need to keep Jacket in

the transaction, nor do we need to add Outerwear to the transaction.

2. Pre-computing ancestors. Rather than �nding ancestors for each item by traversing the

taxonomy graph, we can pre-compute the ancestors for each item. We can drop ancestors

that are not present in any of the candidates at the same time.

3. Pruning itemsets containing an item and its ancestor. We �rst present two lemmas

to justify this optimization.

Lemma 1. The support for an itemset X that contains both an item x and its ancestor bx
will be the same as the support for the itemset X�bx.
Proof: Clearly, any transaction that supports X will also support X�bx, since X�bx � X . By

de�nition, any transaction that supports x supports bx. Hence any transaction that supports

X�bx will also support X . 2

Lemma 2. If Lk , the set of frequent k-itemsets, does not include any itemset that contains

both an item and its ancestor, the set of candidates Ck+1 generated by the candidate genera-

tion procedure in Section 3.1 will not include any itemset that contains both an item and its

ancestor.

Proof: Assume that the candidate generation procedure generates a candidate X that con-

tains both an item x and its ancestor bx. Let X 0 be any subset of X with k items that contains

both x and bx. Since X was not removed in the prune step of candidate generation, X 0 must

be have been in Lk. But this contradicts the statement that no itemset in Lk includes both

an item and its ancestor. 2

Lemma 1 shows that we need not count any itemset which contains both an item and its

ancestor. We add this optimization by pruning the candidate itemsets of size two which

consist of an item and its ancestor. Lemma 2 shows that pruning these candidates is su�cient

to ensure that we never generate candidates in subsequent passes which contain both an item

and its ancestor.

Figure 6 gives an overview of the Cumulate algorithm.
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Compute T �, the set of ancestors of each item, from T . // Optimization 2
L1 := ffrequent 1-itemsetsg;
k := 2; // k represents the pass number
while ( Lk�1 6= ; ) do
begin

Ck := New candidates of size k generated from Lk�1.
if (k = 2) then

Delete any candidate in C2 that consists of an item and its ancestor. // Optimization 3
Delete any ancestors in T � that are not present in any of the candidates in Ck. // Optimization 1
forall transactions t 2 D do

begin

foreach item x 2 t do

Add all ancestors of x in T � to t.
Remove any duplicates from t.
Increment the count of all candidates in Ck that are contained in t.

end

Lk := All candidates in Ck with minimum support.
k := k + 1;

end

Answer :=
S
k
Lk;

Figure 6: Algorithm Cumulate

3.3. Strati�cation

We motivate this algorithm with an example. Let fClothes, Shoesg, fOuterwear, Shoesg and

fJacket, Shoesg be candidate itemsets to be counted, with \Jacket" being the child of \Outerwear",

and \Outerwear" the child of \Clothes". If fClothes, Shoesg does not have minimum support, we

do not have to count either fOuterwear, Shoesg or fJacket, Shoesg. Thus, rather than counting

all candidates of a given size in the same pass as in Cumulate, it may be faster to �rst count

the support of fClothes, Shoesg, then count fOuterwear, Shoesg if fClothes, Shoesg turns out to

have minimum support, and �nally count fJacket, Shoesg if fOuterwear, Shoesg also has minimum

support. Of course, the extra cost in making multiple passes over the database may be more than

the bene�t of counting fewer itemsets. We will discuss this tradeo� in more detail shortly.

We develop this algorithm by �rst presenting the straight-forward version, \Stratify", and

then describing the use of sampling to increase its e�ectiveness (the \Estimate" and \EstMerge"

versions). The optimizations we introduced for the Cumulate algorithm apply to this algorithm as

well.

3.3.1. Stratify. Consider the partial ordering induced by the taxonomyDAG on a set of itemsets.

Itemsets with no parents are considered to be at depth 0. For other itemsets, the depth of an itemset
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X is de�ned to be (max(fdepth( bX) j bX is a parent of Xg) + 1).

We �rst count all itemsets C0 at depth 0. After deleting candidates that are descendants of those

itemsets in C0 that did not have minimum support, we count the remaining itemsets at depth 1

(C1). After deleting candidates that are descendants of the itemsets in C1 without minimum

support, we count the itemsets at depth 2, etc. If there are only a few candidates at depth n, we

can count candidates at di�erent depths (n, n+1, ...) together to reduce the overhead of making

multiple passes.

There is a tradeo� between the number of itemsets counted (CPU time) and the number of

passes over the database (IO+CPU time). One extreme would be to make a pass over the database

for the candidates at each depth. This would result in a minimal number of itemsets being counted,

but we may waste a lot of time in scanning the database multiple times. The other extreme would

be to make just one pass for all the candidates, which is what Cumulate does. This would result

in counting many itemsets that do not have minimum support and whose parents do not have

minimum support. In our implementation, we used the heuristic (empirically determined) that we

should count at least 20% of the candidates in each pass.

3.3.2. Estimate. Rather than hoping that candidates which include items at higher levels of the

taxonomy will not have minimum support, resulting in our not having to count candidates which

include items at lower levels, we can use sampling to estimate the support of candidates. We then

count candidates that are expected to have minimum support as well as candidates that are not

expected to have minimum support but all of whose parents have minimum support. (We call this

set C0

k , for candidates of size k.) We expect that the latter candidates will not have minimum

support, and hence we will not have to count any of the descendants of those candidates. If some of

those candidates turn out to have minimum support support, we make an extra pass to count their

descendants. (We call this set of candidates C00

k .) If we only count candidates that are expected

to have minimum support, we will have to make another pass to count their children, since we can

only be sure that their children do not have minimum support if we actually count them.

In our implementation, we included candidates whose support in the sample was 0.9 times the

minimum support, and candidates all of whose parents had 0.9 times the minimum support, in C0

k

in order to reduce the e�ect of sampling error. We will discuss the e�ect of changing this sampling

error margin shortly, when we also discuss how the sample size can the chosen.

Example. For example, consider the three candidates shown in Figure 7. Let \Jacket" be a child

of \Outerwear" and \Outerwear" a child of \Clothes". Let minimum support be 5%, and let the
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Candidate Support in Support in Database
Itemsets Sample Scenario A Scenario B

fClothes, Shoesg 8% 7% 9%
fOuterwear, Shoesg 4% 4% 6%
fJacket, Shoesg 2%

Figure 7: Example for Estimate

support for the candidates in a sample of the database be as shown in Figure 7. Hence, based

on the sample, we expect only fClothes, Shoesg to have minimum support over the database. We

now �nd the support of both fClothes, Shoesg and fOuterwear, Shoesg over the entire database.

We count fOuterwear, Shoesg even though we do not expect it to have minimum support since

we will not know for sure whether it has minimum support unless fClothes, Shoesg does not have

minimum support, and we expect fClothes, Shoesg to have minimum support. Now, in scenario

A, we do not have to �nd the support for fJacket, Shoesg since fOuterwear, Shoesg does not have

minimum support (over the entire database). However, in scenario B, we have to make an extra

pass to count fJacket, Shoesg.

3.3.3. EstMerge. Since the estimate (based on the sample) of which candidates have minimum

support has some error, Estimate usually makes a second pass where it counts the support for the

candidates in C00

k (the descendants of candidates in Ck that were wrongly expected to not have

minimum support.) The number of candidates counted in this pass is usually small. Rather than

making a separate pass to count these candidates, we can count them when we count candidates in

Ck+1. However, since we do not know if the candidates in C00

k will have minimum support or not, we

assume all these candidates to be frequent when generating Ck+1. That is, we will consider Lk to

be those candidates in C0

k with minimum support, as well as all candidates in C00

k , when generating

Ck+1. This can generate more candidates in Ck+1 than would be generated by Estimate, but does

not a�ect correctness. The tradeo� is between the extra candidates counted by EstMerge against

the extra pass made by Estimate. An overview of the algorithm is given in Figure 8. (All the

optimizations introduced for the Cumulate algorithm apply here, though we have omitted them in

the �gure.)

3.3.4. Size of Sample. We now discuss how to select the sample size for estimating the support

of candidates. Let p be the support (as a fraction) of a given itemset X . Consider a random

sample with replacement of size n from the database. Then the number of transactions in the

sample that contain X is a random variable s with binomial distribution of n trials, each having

13



L1 := ffrequent 1-itemsetsg;
Generate DS , a sample of the database, in the �rst pass;
k := 2; // k represents the pass number
C00

1
:= ;; // C 00

k
represents candidates of size k to be counted with candidates of size k+1.

while ( Lk�1 6= ; or C00

k�1
6= ;) do

begin

Ck := New candidates of size k generated from Lk�1 [C00

k�1
.

Estimate the support of the candidates in Ck by making a pass over DS .
C0

k
:= Candidates in Ck that are expected to have minimum support and candidates
all of whose parents are expected to have minimum support.

Find the support of the candidates in C0

k
[C00

k�1
by making a pass over D.

Delete all candidates in Ck whose ancestors (in C0

k
) do not have minimum support.

C00

k
:= Remaining candidates in Ck that are not in C0

k
.

Lk := All candidates in C0

k
with minimum support.

Add all candidates in C00

k�1
with minimum support to Lk�1.

k := k + 1;
end

Answer :=
S
k
Lk;

Figure 8: Algorithm EstMerge

p = 5% p = 1% p = 0:5% p = 0:1%
a = .8p a = .9p a = .8p a = .9p a = .8p a = .9p a = .8p a = .9p

n = 1000 0.32 0.76 0.80 0.95 0.89 0.97 0.98 0.99
n = 10; 000 0.00 0.07 0.11 0.59 0.34 0.77 0.80 0.95
n = 100; 000 0.00 0.00 0.00 0.01 0.00 0.07 0.12 0.60
n = 1; 000; 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Table 1: Pr[support in sample < a], given values for the sample size n, the real support p and a

success probability p. We use the abbreviation s � k (\s is at least as extreme as k") de�ned by

s � k()

(
x � k if k � pn

x � k if k < pn

Using Cherno� bounds [HR90] [AS92], the probability that the fractional support in the sample is

at least as extreme as a is bounded by

Pr[s � an] �

"�
p

a

�a �1�p
1�a

�1�a#n
(3.1)

Table 1 presents probabilities that the support of an itemset in the sample is less than a when its

real support is p, for various sample sizes n. For example, given a sample size of 10,000 transactions,

the probability that the estimate of a candidate's support is less than 0.8% when its real support

is 1% is less than 0.11.

Equation 3.1 suggests that the sample size should increase as the minimum support decreases.

Also, the probability that the estimate is o� by more than a certain fraction of the real support
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Parameter Default Value
jDj Number of transactions 1,000,000
jT j Average size of the Transactions 10
jIj Average size of the maximal potentially frequent Itemsets 4
jIj Number of maximal potentially Frequent itemsets 10,000
N Number of items 100,000
R Number of Roots 250
L Number of Levels 4-5
F Fanout 5

D Depth-ratio
�
�

probability that item in a rule comes from level i
probability that item comes from level i+ 1

�
1

Table 2: Parameters for Synthetic Data Generation with default values

depends only on the sample size, not on the database size. Experiments showing the e�ect of

sample size on the running time are given in Section 4.2.

4. Performance Evaluation

In this section, we evaluate the performance of the three algorithms on both synthetic and real-

life datasets. First, we describe the synthetic data generation program in Section 4.1. We present

some preliminary results comparing the three variants of the strati�cation algorithm and the e�ect

of changing the sample size in Section 4.2. We then give the performance evaluation of the three

algorithms on synthetic data in Section 4.3. We do a reality check of our results on synthetic data

by running the algorithms against two real-life data sets in Section 4.4. Finally, we look at the

e�ectiveness of the interest measure in pruning redundant rules in Section 4.5.

We performed our experiments on an IBM RS/6000 250 workstation with 128 MB of main

memory running AIX 3.2.5. The data resided in the AIX �le system and was stored on a local 2GB

SCSI 3.5" drive, with measured sequential throughput of about 2 MB/second.

4.1. Synthetic Data Generation

Our synthetic data generation program is a generalization of the algorithm in [AS94]; the

addition being the incorporation of taxonomies. The various parameters and their default vales are

shown in Table 2. We now describe the extensions to the data generation algorithm in more detail.

The essential idea behind the synthetic data generation program in [AS94] was to �rst generate

a table of potentially frequent itemsets I, and then generate transactions by picking itemsets from

I and inserting them in the transaction. Details can be found in [AS94].
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To extend this algorithm, we �rst build a taxonomy over the items.5 For simplicity, we modeled

the taxonomy as a forest rather than a DAG. For any internal node, the number of children is

picked from a Poisson distribution with mean � equal to fanout F . We �rst assign children to the

roots, then to the nodes at depth 2, and so on, till we run out of items. With this algorithm, it

is possible for the leaves of the taxonomy to be at two di�erent levels; this allows us to change

parameters like the fanout or the number of roots in small increments.

Each item in the taxonomy tree (including non-leaf items) has a weight associated with it, which

corresponds to the probability that the item will be picked for a frequent itemset. The weights

are distributed such that the weight of an interior node x equals the sum of the weights of all its

children divided by the depth-ratio. Thus with a high depth-ratio, items will be picked from the

leaves or lower levels of the tree, while with a low depth-ratio, items will be picked from higher up

the tree.

Each itemset in I has a weight associated with it, which corresponds to the probability that

this itemset will be part of a transaction. This weight is picked from an exponential distribution

with unit mean, and then multiplied by the geometric mean of the probabilities of all the items in

the itemset. The weights are later normalized so that the sum of the weights for all the itemsets

in I is 1. The next itemset to be put in a transaction is chosen from I by tossing an jIj-sided

weighted coin, where the weight for a side is the probability of picking the associated itemset.

When an itemset X in I is picked for adding to a transaction, it is �rst \specialized". For each

item bx in X which is not a leaf in the taxonomy, we descend the subtree rooted at bx till we reach

a leaf x, and replace bx with x. At each node, we decide what branch to follow by tossing a k-sided

weighted coin, where k is the number of children, and the weights correspond to the weights of the

children.

We generate transactions as follows. We �rst determine the size of the next transaction. The

size is picked from a Poisson distribution with mean � equal to jT j. We then assign items to the

transaction. Each transaction is assigned a series of potentially frequent itemsets. The next itemset

to be added to the transaction is chosen as described earlier. If the itemset on hand does not �t in

the transaction, the itemset is put in the transaction anyway in half the cases, and the itemset is

moved to the next transaction the rest of the cases.

Since items in a frequent itemset may not always be bought together, we assign each itemset in

I a corruption level c. When adding an itemset to a transaction, we keep dropping an item from

the itemset as long as a uniformly distributed random number between 0 and 1 is less than c. Thus

5Out of the four parameters R, L, F and N , only three need to be speci�ed, since any three of these determine
the fourth parameter.
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Figure 10: Changing Sample Size

for an itemset of size l, we will add l items to the transaction 1� c of the time, l� 1 items c(1� c)

of the time, l� 2 items c2(1� c) of the time, etc. The corruption level for an itemset is �xed and

is obtained from a normal distribution with mean 0.5 and variance 0.1.

4.2. Preliminary Experiments

Strati�cation : Variants. The results of comparing the three variants of the strati�cation

algorithm on the default synthetic data are shown in Figure 9. At high minimum support, when

there are only a few rules and most of the time is spent scanning the database, the performance

of the three variants is nearly identical. At low minimum support, when there are more rules,

EstMerge does slightly better than Estimate and signi�cantly better than Stratify. The reason is

that even though EstMerge counts a few more candidates than Estimate and Stratify, it makes

fewer passes over the database, resulting in better performance.

Although we do not show the performance of Stratify and Estimate in the graphs in Section 4.3,

the results were very similar to those in Figure 9. Both Estimate and Stratify always did somewhat

worse than EstMerge, with Estimate beating Stratify.

Size of Sample. We changed the size of the sample from 0.25% to 8%. The running time

was higher at both low sample sizes and high sample sizes. In the former case, the decrease

in performance was due to the greater error in estimating which itemsets would have minimum

support. In the latter case, it was due to the sampling overhead. Notice that the curve is quite 
at

around the minimum time at 2%; there is no signi�cant di�erence in performance if we sample a

little less or a little more than 2%.
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4.3. Comparison of Basic, Cumulate and EstMerge

We performed 6 experiments on synthetic datasets, changing a di�erent parameter in each

experiment. The results are shown in Figure 11. All the parameters except the one being varied

were set to their default values. The minimum support was 0.5% (except for the �rst experiment,

which varies minimum support). We obtained similar results at other levels of support, though the

gap between the algorithms typically increased as we lowered the support.

Minimum Support:. We changed minimum support from 2% to 0.3%. Cumulate and EstMerge

were around 3 to 4 times faster than Basic, with the performance gap increasing as the minimum

support decreased. At high support, Cumulate and EstMerge took about the same time since there

were only a few rules and most of the time was spent scanning the database. At low support,

EstMerge was about 20% faster than Cumulate.

Number of Transactions:. We varied the number of transactions from 100,000 to 10 million.

Rather than showing the elapsed time, the graph shows the elapsed time divided by the number

of transactions, normalized such that the time taken by Cumulate for 1 million transactions is 1

unit. Again, EstMerge and Cumulate perform much better than Basic. The ratio of the time taken

by EstMerge to the time taken by Cumulate decreases as the number of transactions increases,

because when the sample size is a constant percentage, the accuracy of the estimates of the support

of the candidates increases as the number of transactions increases.

Fanout:. We changed the fanout from 5 to 25. This corresponded to decreasing the number

of levels. While EstMerge did about 25% better than Cumulate at fanout 5, the performance

advantage deceased as the fanout increased, and the two algorithms did about the same at high

fanout. The reason is that at a fanout of 25, the leaves of the taxonomy were either at level 2 or level

3. Hence the percentage of candidates that could be pruned by sampling became very small and

EstMerge was not able to count signi�cantly fewer candidates than Cumulate. The performance

gap between Basic and the other algorithms decreases somewhat at high fanout since there were

fewer rules and a greater fraction of the time was spent just scanning the database.

Number of Roots:. We increased the number of roots from 250 to 1000. As shown by the

�gure, increasing the number of roots has an e�ect similar to decreasing the minimum support.

The reason is that as the number of roots increases, the probability that a speci�c root would be

present in a transaction decreases.
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Figure 11: Experiments on Synthetic Data
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Figure 12: Comparison of algorithms on real data

Number of Items/Levels:. We varied the number of items from 10,000 to 100,000. The main

e�ect is to change the number of levels in the taxonomy tree, from most of the leaves being at level

3 (with a few at level 4) at 10,000 items to most of the leaves being at level 5 (with a few at level

4) at 100,000 items. Changing the number of items did not signi�cantly a�ect the performance of

Cumulate and EstMerge, but increased the time taken by Basic. Since few of the items in frequent

itemsets come from the leaves of the taxonomy, the number of frequent itemsets did not change a

lot for any of the algorithms. However, Basic had to do more work to �nd the candidates contained

in the transaction since the transaction size (after adding ancestors) increased proportionately with

the number of levels. Hence the time taken by Basic increased with the number of items, while the

time taken by the other two algorithms remained roughly constant.

Depth-Ratio:. We changed the depth-ratio from 0.5 to 2. With high depth-ratios, items in

frequent itemsets will tend to be picked from the leaves or lower levels of the tree, while with low

depth-ratios, items will be picked from higher up the tree. As shown in the �gure, the performance

gap between EstMerge and the other two algorithms increased as the depth-ratio increased. At a

depth-ratio of 2, EstMerge did about 30% better than Cumulate, and about 5 times better than

Basic. The reason is that EstMerge was able to prune a higher percentage of candidates at high

depth-ratios.

Summary of Results with Synthetic Data.. Cumulate and EstMerge were 2 to 5 times faster

than Basic on all the synthetic datasets. EstMerge was 25% to 30% faster than Cumulate on many

of the datasets. The advantage decreased at high fanout, since most of the items in the rules

came from the top levels of the taxonomy and EstMerge was not able to prune many candidates.
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There was an increase in the performance gap between Cumulate and EstMerge as the number of

transactions increased, since for a constant percentage sample size, the accuracy of the estimates

of the support of the candidates increases as the number of transactions increases. Both EstMerge

and Cumulate exhibits linear scale-up with the number of transactions.

4.4. Reality Check

To see if our results on synthetic data held in \real world", we ran the algorithms on two real-life

datasets.

Supermarket Data. This is data about grocery purchases of customers. There are a total of

548,000 items. The taxonomy has 4 levels, with 118 roots. There are around 1.5 million transac-

tions, with an average of 9.6 items per transaction. Figure 12 shows the time taken by the three

algorithms as the minimum support is decreased from 3% to 0.75%. These results are similar to

those obtained on synthetic data, with EstMerge being a little faster than Cumulate, and both

being about 3 times as fast as Basic.

Department Store Data. This is data from a department store. There are a total of 228,000

items. The taxonomy has 7 levels, with 89 roots. There are around 570,000 transactions, with an

average of 4.4 items per transaction. Figure 12 shows the time taken by the three algorithms as

the minimum support is decreased from 2% to 0.25%. The y-axis uses a log scale. Surprisingly,

the Basic algorithm was more than 100 times slower than the other two algorithms. Since the

taxonomy was very deep, the ratio of the number frequent itemsets that contained both an item

and its ancestor to the number of frequent itemsets that did not was very high. In fact, Basic

counted around 300 times as many frequent itemsets as the other two algorithms, resulting in very

poor performance.

4.5. E�ectiveness of Interest Measure

We looked at the e�ectiveness of the interest measure in pruning rules for the two real-life

datasets. Figure 13 shows the fraction of rules pruned for the supermarket and the department

store datasets as the interest level is changed from 0 to 2, for di�erent values of support and

con�dence. For the supermarket data, about 40% of the rules were pruned at a interest level of

1.1, while about 50% to 55% were pruned for the department store data at the same interest level.

In contrast, the interest measure based on statistical signi�cance did not prune any rules at 50%

con�dence and pruned less than 1% of the rules at 25% con�dence (for both datasets).

21



Supermarket Department Store

0

5

10

15

20

25

30

35

40

45

50

0 0.5 0.9 1 1.1 1.5 2

F
ra

ct
io

n
 o

f 
R

u
le

s 
P

ru
n
e
d
 (

%
)

Interest Level

1% Sup, 25% Conf
1% Sup, 50% Conf
2% Sup, 25% Conf
2% Sup, 50% Conf
3% Sup, 25% Conf
3% Sup, 50% Conf

0

10

20

30

40

50

60

70

80

0 0.5 0.9 1 1.1 1.5 2

F
ra

ct
io

n
 o

f 
R

u
le

s 
P

ru
n
e
d
 (

%
)

Interest Level

0.5% Sup, 25% Conf
0.5% Sup, 50% Conf

1% Sup, 25% Conf
1% Sup, 50% Conf

Figure 13: E�ectiveness of Interest Measure

For example, the rule \[Carbonated beverages] and [Crackers]) [Dairy-milk-refrigerated]" was

pruned because because its support and con�dence were less than 1.1 times the expected support

and con�dence (respectively) of ancestor \[Carbonated beverages] and [Crackers]) [Milk]", where

[Milk] was an ancestor of [Dairy-milk-refrigerated].

5. Summary

We introduced the problem of mining generalized association rules. Given a large database

of customer transactions, where each transaction consists of a set of items, and a taxonomy (is-a

hierarchy) on the items, we �nd associations between items at any level of the taxonomy. Earlier

work on association rules did not consider the presence of taxonomies, and restricted the items in

the association rules to the leaf-level items in the taxonomy.

An obvious solution to the problem is to replace each transaction with an \extended transaction"

that contains all the items in the original transaction as well as all the ancestors of each item in

the original transaction. We could then run any of the earlier algorithms for mining association

rules on these extended transactions to get generalized association rules. However, this \Basic"

approach is not very fast.

We presented two new algorithms, Cumulate and EstMerge. Empirical evaluation showed that

these two algorithms run 2 to 5 times faster than Basic; for one real-life dataset, the performance

gap was more than 100 times. Between the two algorithms, EstMerge performs somewhat better

than Cumulate, with the performance gap increasing as the size of the database increases. Both

EstMerge and Cumulate exhibit linear scale-up with the number of transactions.
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A problem users experience in applying association rules to real problems is that many unin-

teresting or redundant rules are generated along with the interesting rules. We developed a new

interest measure that uses the taxonomy information to prune redundant rules. The intuition be-

hind this measure is that if the support and con�dence of a rule are close to their expected values

based on an ancestor of the rule, the rule can be considered redundant. This measure was able to

prune 40% to 60% of the rules on two real-life datasets. In contrast, an interest measure based on

statistical signi�cance that did not use taxonomies was not able to prune even 1% of the rules.
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