
Querying Shapes of Histories

Rakesh Agrawal Giuseppe Psaila� Edward L. Wimmers Mohamed Za��t

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

ABSTRACT: We present a shape de�nition language, called SDL, for retrieving objects based
on shapes contained in the histories associated with these objects. It is a small, yet powerful,
language that allows a rich variety of queries about the shapes found in historical time sequences.
An interesting feature of SDL is its ability to perform blurry matching. A \blurry" match is one
where the user cares about the overall shape but does not care about speci�c details. Another
important feature of SDL is its e�cient implementability. The SDL operators are designed to be
greedy to reduce non-determinism, which in turn substantially reduces the amount of back-tracking
in the implementation. We give transformation rules for rewriting an SDL expression into a more
e�cient form as well as an index structure for speeding up the execution of SDL queries. We used
SDL to \mine the mined rules" in a data mining application and found that the capability to query
the behavior of the mined rules over a period of time led to the discovery of new and interesting
information.

�Current Address: Politecnico di Milano, Italy.

Symbol Description lb ub iv fv

up slightly increasing transition .05 .19 anyvalue anyvalue

Up highly increasing transition .20 1.0 anyvalue anyvalue

down slightly decreasing transition -.19 -.05 anyvalue anyvalue

Down highly decreasing transition -1.0 -.19 anyvalue anyvalue

appears transition from a zero value to a non-zero value 0 1.0 zero nonzero

disappears transition from a non-zero value to a zero value -1.0 0 nonzero zero

stable the �nal value nearly equal to the initial value -.04 .04 anyvalue anyvalue

zero both the initial and �nal values are zero 0 0 zero zero

Table 1: An Illustrative Alphabet A

1. Introduction

Historical time sequences constitute a large portion of data stored in computers. Examples
include histories of stock prices, histories of product sales, histories of inventory consumption, etc.
Assume a simple data model in which the database consists of a set of objects. Associated with
each object is a set of sequences of real values. We call these sequences histories and each history
has a name. For example, in a stock database, associated with each stock may be histories of
opening price, closing price, the high for the day, the low for the day, and the trading volume.

The ability to select objects based on the occurrence of some shape in their histories is a
requirement that arises naturally in many applications. For example, we may want to retrieve
stocks whose closing price history contains a head and shoulder pattern [5]. We should be able
to specify shapes roughly. For example, we may choose to call a trend uptrend even if there were
some down transitions as long as they were limited to a speci�ed number.

To this end, we propose a shape de�nition language, called SDL. It is a small, yet powerful,
language that allows a rich variety of queries about the shapes found in histories. The most
interesting feature of SDL is its capability for blurry matching. A \blurry" match is one where the
user cares about the overall shape but does not care about speci�c details. For example, the user
may be interested in a shape that is �ve time periods long and contains at least three ups but no
more than one down. SDL has been designed to make it easy and natural to express such queries.
Another important feature of SDL is that it has been designed to be e�ciently implementable.
Most of the SDL operators are greedy and therefore there is very little non-determinism (in the
sense of multiple match possibilities) inherent in an SDL shape, which in turn substantially reduces
the amount of back-tracking in the implementation. In addition, SDL provides the potential for
rewriting a shape expression into a more e�cient form as well as the potential for indexes for
speeding up the implementation.

SDL bene�ts from a rich heritage of languages based on regular expressions, but this earlier
work has a di�erent design focus that in
uences which expressions are easy to write, understand,
optimize, and evaluate. For example, while the blurry matching of SDL is reminiscent of approx-
imate matching for strings [3] [9] [11] [12] [14] or for patterns in time series [2], SDL allows the
user to impose arbitrary conditions on the blurry match but requires that the user specify those
conditions completely. The event speci�cation languages in active databases [4] [6] [7] concentrate
on detecting the endpoints of events rather than concentrating on intervals as SDL does. The

1

SEQ work of [10] focused on building a framework for describing constructs from various existing
sequence models. Later in the paper, after we have presented SDL, we will make a more detailed
comparison with some of the existing work.

Organization of the Paper. The rest of the paper is organized as follows. In Section 2, we
introduce SDL informally through examples; the formal semantics is given in Appendix A. In
Section 3, we discuss the design rationale of SDL. We discuss its expressive power, its capability
for blurry matching, its ease of use, and its e�cient implementability. We also compare it to existing
related languages. Formal proofs of equivalence are given in Appendix C. In Section 4, we give
transformation rules for rewriting an SDL expression into an equivalent but a more e�cient form.
In Section 5, we describe an index structure and show how it can be used to speed up the evaluation
of SDL queries. In Section 6, we report our experience with using this language on real-life data,
and conclude by giving directions for future work.

2. Shape De�nition Language

We will introduce our shape de�nition language, SDL, informally through examples. The formal
semantics is given in Appendix A. Every object in the database has associated with it several named
histories. Each history is a sequence of real values.

The behavior of a history can be described by considering the values assumed by the history at
the beginning and the end of a unit time period; that is, by considering transitions from an instant
to the following one. It is immediate then that a history generates a transition sequence based on
an alphabet whose symbols describe classes of transitions.

2.1. Alphabet

The syntax for specifying alphabet is 1 :

(alphabet (symbol lb ub iv fv))

Here symbol is a symbol of the alphabet being de�ned and the rest four descriptors provide the
de�nition for the symbol. The �rst two, lb and ub, are the lower and upper bounds respectively of
the allowed variation from the initial value to the �nal value of the transition. The latter two, iv
and fv, can be one of zero, nonzero and anyvalue, and specify constraints on the initial and �nal
value respectively of the transition.

Table 1 gives an illustrative alphabet A. Consider the time sequence H :

(0 0 :02 :17 :35 :50 :45 :43 :15 :03 0)

Figure 1 graphically shows this sequence.

1We have adopted a Lisp-like notation for our expression language for two reasons. First, it gives us the possibility

to incrementally extend the language with new features while maintaining uniformity. Second, the basic notion of

list or sequence that characterizes Lisp also underlies our view of a shape of a history.

2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

V
a
lu

e

Time

Figure 1: Time Sequence H = (0 0 :02 :17 :35 :50 :45 :43 :15 :03 0)

Given alphabet A, a transition sequence corresponding to H will be:

(zero appears up up up down stable Down down disappears)

Depending on the alphabet, there can be more than one transition sequence corresponding to a
time sequence. For example, another transition sequence corresponding to H is:

(zero stable up up up down stable Down down stable)

This ambiguity does not cause inconsistency at query time because the user speci�es the particular
shape to be matched. For example, if the user had asked for stable, we will resolve the ambiguity
between stable and zero in the favor of stable.

We will use the alphabet A and the time sequence H throughout the paper to give concrete
examples. We will use the notation H[i,j] to represent the subsequence of H consisting of elements
from position i to the position j inclusive, 0 being the �rst position. H[i,i] will represent the null
sequence since an elementary shape (see Section 2.2.1) requires at least one transition.

Building the Alphabet Table. A straightforward way of building the alphabet table is to ask
the user to provide lb, ub, iv and fv values for each symbol. However, the user may have di�culty
in providing bounds for each symbol. A better approach will be to let the user give examples of
values for transition symbols and infer the alphabet table from these examples.

Given a �xed number of classes and example entities belonging to each class (called training
set), a classi�er[13] generates characteristic functions to describe each class. We can synthesize
the alphabet table by treating it as a classi�cation problem. There will be as many classes as the
number of symbols in the alphabet. Besides the class label, each example tuple in the training set

3

will have three attributes: iv, fv and val. The �rst two are categorical attributes and will have one
of two possible values: zero and nonzero. The third attribute is a numerical attribute.

The training set is generated as follows. Show graphically the user several histories and let the
user interactively label each segment of the history with a symbol that best describes the transition.
For each transition so labeled, compute the values of the aforementioned three attributes. The
attribute iv (fv) will have zero or nonzero value depending on whether the initial (�nal) value of
the transition was zero or non-zero. The value for var is simply the di�erence between the �nal
and the initial value of the transition.

Having so generated the training set, a simple classi�er synthesizes the alphabet table as follows.
A symbol is assigned zero or nonzero value for iv (fv) if there is no exception to these values
for the attribute iv (fv) in the training set for this symbol (or the exceptions are below some
threshold); otherwise, anyvalue is assigned. The values for lb and ub for a symbol are determined
by computing bounds on the values of the attribute var for the symbol in the training set. The
user can then �ne tune the alphabet table as necessary.

2.2. Shape Descriptors

Using the alphabet of the language, we can de�ne classes of shapes that can be matched in
histories or parts of them. The application of a shape descriptor P to a time sequence S produces
a set of all the subsequences in S that match the shape P . If no subsequence in S matches P , then
the result is an empty set. Depending on the descriptor, a null sequence can match a shape. For
the convenience of the user, however, the null sequences are not reported to the user.

The syntax for de�ning a shape is:

(shape name(parameters) descriptor)

A shape de�nition is identi�ed by means of a name for the shape, which is followed by a possibly
empty list of parameters (see Section 2.4) and then a descriptor for the shape. For example, here
is a de�nition of a spike:

(shape spike() (concat Up up down Down))

This de�nition has no parameters. The meaning of the descriptor will become clear momentarily.

2.2.1. Elementary Shapes. The simplest shape descriptor is an elementary shape. All the
symbols of the alphabet correspond to elementary shapes. When an elementary shape is applied
to a time sequence S, the resulting set contains all the subsequences of S that contain only the
speci�ed elementary shape.

For example, the shape descriptor (stable) applied to the time sequence H given in Figure 1
yields the set fH[0,1], H[1,2], H[9,10]g, where H[0,1] = (0 0), H[1,2] = (0 .02) and H[9,10] = (.03
0). The descriptor (zero) yields the set fH[0,1]g. Note that the subsequence H[0,1] is contained
in the result set of both the descriptors because the transition corresponding to this subsequence
satis�es the de�nitions of both stable and zero. Finally, the shape descriptor (Up) results in an
empty set because H contains no Up transition.

4

2.3. Derived Shapes

Starting with the elementary shapes, complex shapes can be derived by recursively combining
elementary and previously de�ned shapes. We describe next the set of operators available for this
purpose.

Multiple Choice Operator any.. The any operator allows a shape to have multiple values.
The syntax is

(any P1 P2 . . . Pn)

where Pi is a shape descriptor. When a shape obtained by means of the any operator is applied to
a time sequence S, the resulting set contains all the subsequences of S that match at least one of
the Pi shapes.

For example, the shape (any zero appears) applied to the time sequence H yields the set
fH[0,1], H[1,2]g, where H[0,1] = (0 0) which is a zero transition and H[1,2] = (0 .02) which is an
appears transition.

Concatenation Operator concat.. Shapes can be concatenated by using the operator concat:

(concat P1 P2 . . . Pn)

When a shape obtained by using the concat operator is applied to a time sequence S, �rst the
shape P1 is matched. If a matching subsequence s is found, P2 is matched in the subsequence of S
immediately following the last element of s and the match is accepted if it is strictly contiguous to
s, etc. For example, the shape descriptor

(concat up up up (any stable down) (any stable down) (any down Down))

speci�es that we are interested in detecting if an upward trend (indicated by three consecutive ups)
has reversed (indicated by two stables or downs, followed by a down or Down). When applied to
the time sequence H, it yields the set fH[2,8]g, where H[2,8] = (.02 .17 .35 .50 .45 .43 .15). The
transition sequence corresponding to this subsequence is (up up up down stable Down).

Multiple Occurrence Operators exact, atleast, atmost.. Shapes composed of multiple con-
tiguous occurrences of the same shape can be de�ned using three other operators, exact, atleast
and atmost:

(exact n P)
(atleast n P)
(atmost n P)

When a shape obtained using exact/atleast/atmost is applied to a time sequence S, it matches
all subsequences of S that contain exactly/at least/at most n contiguous occurrences of the shape
P . In addition, the resulting subsequences are such they are neither preceded nor followed by a
subsequence that matches P . For example,

5

(exact 2 up) yields ;.
(atleast 2 up) yields fH[2,5]g, where H[2,5] = (.02 .17 .35 .50).
(atmost 2 up) yields f[k; k]j0 � k � 1 _ 6 � k � 10g.

The �rst shape results in an empty set because there is no subsequence in H which is exactly
two transitions long, consisting entirely of up transitions, and neither preceded nor followed by
an up transition. The second shape matched the subsequence consisting of three contiguous up

transitions.

The result for the third shape merits further discussion. The shape (atmost 2 up) matches the
null sequence at those positions of H that do not participate in an up transition. The other null
sequences are not in the answer since they participate in a sequence of 3 consecutive ups. Since
the �nal answer in this case is a set of null sequences and we do not report null sequences, the user
will see ; as the answer. Allowing a null sequence to match atmost n P has the virtue that we can
naturally specify

(concat (atleast 2 up) (atmost 1 Down))

and match it to H[2,5] corresponding to the transition sequence up up up.

Bounded Occurrences Operator in.. The in operator is the most interesting SDL operator.
It permits blurry matching by allowing users to state an overall shape without giving all the speci�c
details. The syntax is

(in length shape-occurrences)

Here length speci�es the length of the shape in number of transitions. The shape-occurrences has
two forms.

In the �rst form, the shape-occurrences can be one of

(precisely n P)
(noless n Q)
(nomore n R)

or a composition of them using the logical operators or and and.

When a shape de�ned using this form is applied to a time sequence S, the resulting set contains
all subsequences of S that are length long in terms of number of time periods (transitions) and
contain precisely (no less than/ no more than) n occurrences of the shape P (Q/R). The n

occurrences of P (Q/R) need not be contiguous in the matched subsequence; there may be arbitrary
gap between any two of them. They may also overlap. For example, the shape descriptor

(in 5 (and (noless 2 (any up Up)) (nomore 1 (any down Down))))

speci�es that we are interested in subsequences �ve intervals long that have at least two ups (either
up or Up) and at most one down (either down or Down). When applied to the time sequence
H, it yields the set fH[2,7]g, where H[2,7] = (.02 .17 .35 .50 .45 .43). The transition sequence

6

corresponding to this subsequence is (up up up down stable). Note that the subsequence H[3,8]
= (.17 .35 .50 .45 .43 .15) � (up up down stable Down) is not in the answer because it has two
downs. As another example, consider the shape

(in 7 (precisely 0 Down))

We are looking for sequences seven time periods long that do not have any Down transitions. H[0,7]
is the only subsequence of H that satis�es this constraint.

The operators precisely, noless, nomore should not be confused with the multiple occurrence
operators exact, atleast, and atmost. The latter are \�rst class" operators that can be used to
introduce shapes to be matched, whereas the former can only appear within the in operator and
constrain the sub-shapes. More importantly, precisely, noless, and nomore allow overlaps and
gaps, whereas exact, atleast, and atmost do not.

The second form for the shape-occurrences is:

(inorder P1 P2 . . .Pn)

where Pi is a shape descriptor. When a shape obtained using this form is applied to a time sequence,
each of the resulting subsequences is length long and contains the shapes P1 through Pn in that
order. Pi and Pi+1 may not overlap, but they may have arbitrary gap. For example, the shape
descriptor

(in 7 (inorder (atleast 2 (any up Up)) (in 4 (noless 3 (any down Down)))))

speci�es that we are interested in subsequences seven time periods long. The matching subsequence
must contain a subsequence that has atleast two ups and that must be followed by another subse-
quence four intervals long that contains at least three downs. When applied to the time sequence
H, it yields the set fH[2,9]g, where H[2,9] = (.02 .17 .35 .50 .45 .43 .15 .03) � (up up up down

stable Down down).

2.4. Parameterized Shapes

Shape de�nitions can be parameterized by specifying the names of the parameters in the pa-
rameter list following the shape name and using them in the de�nition of the shape in place of
concrete values. Here is an example of a parameterized spike:

(shape spike(upcnt dncnt)

(concat (exact upcnt (any up Up)) (exact dncnt (any down Down))))

When a parameterized shape P is used in the de�nition of another shape Q, the parameters of
P must be bound. They can be bound to concrete values or to the parameters of Q. Here is an
example:

(shape doublepeak(width ht1 ht2)

(in width (inorder spike(ht1 ht1) spike(ht2 ht2))))

7

3. Design of SDL

SDL provides the following key advantages:

� a natural and powerful language for expressing shape queries

� capability for blurry matching

� reduction of output clutter

� an e�cient implementation

3.1. Expressive Power of SDL

Using SDL, one can express a wide variety of queries about the shapes found in a history.
Given a sequence and a shape, one type of query (called continuous matching in [10]) �nds all the
subsequences that match the shape; the other type of query (referred to as \regular matching" in
this paper) produces a boolean indicating whether the entire sequence matches the shape.

Since SDL includes the operators concat, any, and atleast, SDL is equivalent in expressive
power to regular expressions for regular matching. This equivalence is proven in Appendix C.
Because SDL is designed to provide ease of expression together with an e�cient implementation, it
has several features to enhance its e�ectiveness. The atleast operator, which is a variant of the �
operator of regular expressions, provides both e�ciency gains and expressiveness enhancements for
continuous matching. The � operator, once it has found the required number of matches, is allowed
(nondeterministically) either to exit or to continue matching; whereas atleast is a greedy operator
that does not exit until it has found as many matches as it can. In the regular matching case, the
greedy nature of atleast does not cause a loss of expressive power since one can always write the
shape so that subsequent shapes are not a�ected by the greedy nature of atleast. Details of this
construction are given in Appendix C.

In the case of continuous matching, the greedy semantics of atleast allow SDL to take
advantage of contextual information to eliminate useless clutter. For example, given the shape
(atleast 5 up), SDL will �nd all the maximal subsequences that have at least �ve consecutive
ups. In other words, SDL does not report the non-maximal subsequences thereby eliminating use-
less clutter. Regular expressions would not be able to eliminate the clutter since they are unable
to \look-ahead" to provide contextual information. If there happen to be seven consecutive ups
in the history, SDL will report this single subsequence of length 7 whereas the regular expression
would report six di�erent (largely overlapping) subsequences; there would be three subsequences
of length 5, two subsequences of length 6, as well as the entire subsequence of length 7. If, in the
future, �nding all such subsequences becomes important, a non-greedy version of atleast could
be added easily to SDL.

3.2. Ease of Expression in SDL

SDL is designed to make it easy and natural to express shape queries. For example, the atleast
operator provides a compact representation of repetitions that seems natural even to someone not

8

familiar with regular expression notation. SDL provides a (non-recursive) macro facility (with
parameters) that enhances readability by allowing commonly occurring shapes to be abstracted.

One of the most exciting features of SDL is the inclusion of the in operator that permits
\blurry" matching in which the user cares about the overall shape but does not care about speci�c
details. Rather than specifying the shape precisely, the user places certain restrictions that the
shape must satisfy. For example, to indicate a uptrend with a subsequence speci�ed by the in

operator, the user might specify (nomore 2 down) thereby limiting the number of downs that can
occur in the subsequence. This query does not place restrictions on where these downs occur, it
merely limits the entire subsequence to a total of no more than 2 downs. Many other characteristics
of the shape of the given length can be supplied and the full power of SDL is available for specifying
these characteristics. While the in operator can be simulated using regular expressions, it is not
easy to do so. The details of the construction can be found in Appendix C and involve keeping
track of how many times diverse �nite automatons have entered accepting states. The in operator
presents a much more natural method for expressing the desired shape.

It is instructive to give an example. Assume that a1; . . . ; an are \disjoint" elementary shapes
(where two elementary shapes are disjoint if they never match the same transition sequence).
Consider the problem of �nding a \permutation" expression that matches exactly those sequences
of length n that have precisely one occurrence of each ai. The straightforward approach of listing
all such possible strings grows factorially. It is well-known that the permutation expression can
be compacted a bit to exponential size but no further compaction is possible in regular expression
notation. (See Appendix B for more details and for proofs.) Since at least exponential size is
required, expressing permutations in regular expression notation is tedious, error-prone, and not
particularly readable. In fact, the permutation example can be generalized. In Appendix B, we
give a natural class of blurry queries and show that for every member of that class, any equivalent
regular expression has at least exponential size. (See Theorem 8.3 in Appendix B for a precise
statement of the result.)

Parameterized shapes (macros) can dramatically reduce the size of a permutation expression.
One can de�ne (inductively) the parameterized shapes Pi to describe all permutations of i elements
as follows: (shape P1(x1)(x1))
(shape P2(x1; x2)(any (concat x1P1(x2))(concat x2P1(x1))))
(shape P3(x1; x2; x3)(any (concat x1P2(x2; x3))(concat x2P2(x1; x3))(concat x3P2(x1; x2))
(shape Pi(x1; . . . ; xi)(any (concat x1Pi�1(x2; . . . ; xi)) . . . (concat xiPi�1(x1; . . . ; xi�1)))) Since each
Pi has size O(i

2), a permutation expression for n elements has size O(n3).

Blurring matching provides an even more e�ective permutation expression. For example,
(in n(and (precisely 1 a1) . . . (precisely 1 an)) does the trick in only linear size. It is in-
structive to examine the features of blurry matching that permit such a compact permutation
expression. Blurry matching permits the use of conjunctive as well as disjunctive expressions. It
is well known that adding \and" to regular expressions does not increase the expressive power
of regular expressions but does permit more compact expressions (see Chapter 3 exercises in
[8]). A permutation expression is such an example. The regular expression (a1j . . . jan) can
be used to describe all the characters. By concatenating n copies, it is possible to express in
O(n2) size all sequences of length exactly n. It is also easy to see that the regular expression
(a1j . . . jai�1jai+1j . . . jan)� ai (a1j . . . jai�1jai+1j . . . jan)� expresses all sequences that have exactly
one ai. By conjuncting these expressions together, we obtain a regular expression with conjunc-

9

tions that expresses permutations and has size O(n2). As already noted, a (pure) regular expression
that expresses permutations must have exponential size. The compactness of permutation expres-
sions in blurry shape notation is primarily due to the fact that blurry shapes permit conjunctions.
Blurry shapes also enhance readability by allowing overlap directly whereas regular expressions
(even with conjunctions) can handle overlap only indirectly by coding up the overlap in a di�erent
regular expression. Even though the permutation example is somewhat contrived to permit the
easy analysis of the complexity and expressive of SDL versus regular expressions, it is representa-
tive of a large class of blurry queries that search for shapes which may occur in any order. In short,
SDL permits the readable and compact expression of shapes that can be implemented e�ciently
and are important to data mining applications!

3.3. E�cient Implementability for SDL

Since the semantics of SDL speci�es that operators such as atleast be greedy, any is the only
operator that introduces any \non-determinism". (In this context, non-determinism means that
there is some starting point that has at least two di�erent subsequences that match starting from
that particular starting point.) This implies that the amount of back-tracking an SDL implementa-
tion needs to do is substantially reduced. For example, in the shape (concat (atleast 4 P)(atleast 3Q))
under the normal regular expression semantics, after 4 P 's were found, the evaluator (i.e. automa-
ton) would have to keep searching for P as well as begin searching for Q. In the SDL semantics,
the search for Q would not begin until all the P 's had been found.

In addition, SDL provides the potential for rewriting a shape expression into a more e�cient
form (Section 4) as well as the potential for indexes (Section 5).

3.4. Comparison to other work

As we mentioned in Section 1, much of the earlier related work has a di�erent design focus.
The di�ering design points in
uence which expressions are easy to write, understand, optimize,
and evaluate. For instance, the work of [7] provides a mechanism for expressing queries that
also has the full power of regular expressions. However, this work focuses more on �nding the
endpoints of \events" rather than concentrating on intervals as SDL does. Suppose one wants
to �nd all subsequences of a given sequence that consist of a single up immediately followed by a
single down. The SDL expression for this query is (concat up down). This can be expressed as
sequence(up; down) in the notation of [7]. (If one only used the base operations of [7], this could
be expressed as relative(up; first) ^ down where first is !relative(any; any).) The answer would
consist of the endpoints of matched sequences and a typical answer might be f6g whereas in SDL,
the answer would be a set of intervals and the corresponding typical answer would be f[4; 6]g. If
desired, correspondence tuples in [7] could be used to describe the corresponding intervals.

The SEQ work of [10] is focused on building a model for describing queries rather than a
language for expressing them. As such it is more interested in describing systems such as SDL
than it is in giving a syntax for expressing queries. While the current SEQ model lacks the power
to do continuous matching on all regular expressions, it does provide some interesting optimization
techniques.

10

4. Shape Rewriting

We now present a set of transformation rules to rewrite a shape expression into an equivalent
but a more e�cient expression. SDL shape operators can be classi�ed into the following groups:

� concat, exact, atleast, atmost, and inorder: Shape arguments must appear in the speci-
�ed order without overlap.

� precisely, noless, and nomore: Shape arguments must appear in the speci�ed order but
can overlap.

� and, or and any: Shape arguments may appear in any order.

An operator can be rewritten using only operators belonging to the same group.

4.1. Idempotence, Commutativity, and Associativity

An operator has the idempotence property if the duplicates of a shape can be removed. It has
the commutativity property if shapes can be permuted. The associativity property is useful for
unnesting similar operators, after which redundant shapes can be removed using idempotence and
commutativity. The any, or, and and operators are idempotent, commutative, and associative.
The concat and inorder operators are associative (but not idempotent and commutative).

Here is an example of the application of these properties:

(any P1 (any P2 P1)) , (any P1 P2 P1) { associativity
, (any P1 P1 P2) { commutativity
, (any P1 P2) { idempotence

4.2. Distributivity

The concat and and operators distribute over any and or operators:

(concat P1 (any P2 P3)) , (any (concat P1 P2) (concat P1 P3))
(and P1 (or P2 P3)) , (or (and P1 P2) (and P1 P3))

Deciding which form is less costly to match is similar to the problem of distributing the join
over the union in relational query optimization, since concat and and result in joins and any and
or result in a union of resulting sets (see Section 5).

4.3. Folding identical shapes in concat

Identical shapes inside the concat operator are folded using the exact operator. For example:

(concat P1 P2 P2 . . . P2 P3) , (concat P1 (exact n P2) P3)

where n is the number of occurrences of P2 in the original shape de�nition, and P1 and P3 do not
have a common su�x/pre�x with P2. This transformation allows the index structure presented in
Section 5 to be used to evaluate the subshape (exact n P2).

11

4.4. Multiple Occurrences Operators

The shape expressions involving a multiple Occurrences Operator (MOO) can often be reduced
to simpler expressions. The transformation rules fall into three categories, depending on how the
MOO has been used: composed with another MOO, inside concat, or inside any.

Composition.. When a MOO, M1, is composed with another MOO, M2, the result depends on
what M1 is:

(fexactjatleastg n (M2 m P)) , (M2 m P) if n = 1, ; if n > 1.
(atmost n (M2 m P)) , (any (exact 0 (M2 m P)) (M2 m P)) if n�1.

In the rule for the atmost operator, the shape arguments to any in the right-hand side of the rule
correspond to 0 and 1 occurrences of the atmost argument in the match.

Inside concat.. When the concat operator is applied to two MOOs, M1 and M2, on the same
shape, the result is ;. The only exception is when M2 matches the null sequence, in which case the
result is the same as yielded by M1. M2 can match the null sequence either because it is atmost or
because the speci�ed number of occurrences is 0.

(concat (M1 n P) (M2 m P)) , (M1 n P) if (M2=atmost or m=0), and ; otherwise.

Inside any.. The operators atmost and atleast can match a range of number of occurrences of
the speci�ed shape, whereas exact matches only the speci�ed number of occurrence. Therefore,
their behavior di�ers inside any. Two atmost (or atleast) over the same shape are equivalent to
one atmost (or atleast) with the number of occurrences equal to the maximum (or minimum) of
the original ones.

(any (atleast n P) (atleast m P)) , (atleast min(n;m) P)
(any (atmost n P) (atmost m P)) , (atmost max(n;m) P)

If two exact over the same shape specify the same number of occurrences, they can be reduced to
one exact; otherwise, the shape expression remains unchanged.

When di�erent MOOs are used inside any, we have the following rules (the order in which
di�erent MOOs are written inside any is not important because any is commutative):

(any (exact n P) (atleast m P)) , (atleast m P) if m�n; (atleast n P) if n=m�1
(any (exact n P) (atmost m P)) , (atmost m P) if m�n; (atmost n P) if m=n�1
(any (atmost n P) (atleast m P)) , (atleast 0 P) if m�n + 1

The above rules are the consequence of the following rewritings of atleast and atmost:

(atleast n P) , (any (exact n P) (exact (n+1) P) . . . (exact (p�1) P) (exact p P))
(atmost n P) , (any (exact 0 P) (exact 1 P) . . . (exact (n�1) P) (exact n P))

where p is the length of the interval over which the matching is being performed.

12

4.5. The \in" operator

When composed with each other, the operators precisely, noless and nomore have the same
properties as the MOOs. When used inside and or or operators, they have the same properties as
MOOs when used inside concat or any operators, respectively.

When the length speci�ed for the in operator is less than the guaranteed minimum length of
the shape or the interval length where the match is to be performed, then the result is empty. The
guaranteed minimum length can often be computed when the shape expression involves noless or
precisely.

It might be tempting, but inorder cannot be rewritten using the other in operators because
it is the only one in the in family that allows gaps but not overlap. For example, the following
transformations are not valid:

(or (inorder P1 P2) (inorder P2 P1)) 6, (and P1 P2)
(inorder P . . . P) 6, (precisely n P)

5. Indexing

A straightforward method to evaluate a shape query will be to scan the entire database and
match the speci�ed shape against each sequence. We propose a storage structure and show how it
is used for speeding up the implementation of SDL.

5.1. The Storage Structure

The proposed hierarchical storage structure, which also acts as an index structure, consisting
of four layers. The top layer is an array indexed by a symbol name from the alphabet. Its size is
ns where ns is the number of symbols in the alphabet. Its elements point to one instance of the
second layer. An instance of the second layer is an array indexed by the start period of the �rst
occurrence of the symbol in the sequence, whose elements point to one instance of the third layer.
The size of an array of this layer is np where np is the maximum number of time periods in some
time sequence. One instance of the third layer is an array indexed by the maximum number of
occurrences of the associated symbol. Each element of this array points to a sorted list of object ids.
Consider an array at this layer, being pointed to from the kth element of a second-layer array. This
array will have np � k elements, starting from the kth position, because a symbol can occur at
most np � k times. Thus, the number of elements in a third-layer array depends on its parent
in the second-layer. We use NULL, as a special value, to mark elements corresponding to empty
combinations, e.g., when a given symbol does not start at a speci�c position in any of the sequences
in the database. Having created this structure, we no longer need the original data.

Figure 2 illustrates this structure. The speci�c entries in this structure are for the sequence H
given in Figure 1.

The size of the �rst three layers of the structure is independent of the number of sequences in
the database, whereas the fourth layer depends on the number of sequences. In the worst case,
the �rst three layers will have ns(1 + np+ np� (np+ 1)=2) entries, which can be approximated to
ns � np2=2. This case arises when all the elements of all the arrays are non-NULL. In the worst

13

...

transition (or shape)

start
period

 appearszero up stable down Down disappears

NULL

Up

number of
consecutive
occurences

0

1 np np-1

...
1

......
2

...

1 np-6 np-5 np-8 np-71 1

H H H H H HH H

6

...

1

5 8

...
9

1 1

np-1

np-9

7

NULL NULL NULL

NULL

3

...
np-2

Figure 2: An index structure for SDL queries.

case, there can be a total of np entries in the fourth layer for a sequence whose transition sequence
does not contain any identical symbol in two contiguous positions. In the best case, there will
be one entry. If sequences have on average k identical contiguous symbols, the total number of
entries in the index will roughly equal np� (ns�np=2+nseq=k). The original data sequences can
be stored as sequences of tuples (s, k0), where k0 is the number of contiguous occurrences of the
symbol s, requiring 2�np�nseq=k entries. We generally expect np to be much smaller than nseq.
Thus, if we were to store sequences using the index storage structure, we can save storage as long
as k < (2 � nseq)=(ns � np). For ns = 10; np = 50; nseq = 1000, k up to 10 can save storage. In
addition, the index can speed up query processing.

5.2. The Mapping Problem

There may be more than one transition sequence corresponding to a time sequence. For example,
the time sequence (0 0 0) can be mapped either to (zero zero) or to (zero stable). One way
to deal with this problem is to store both mappings in the index. However, this may lead to an
exponential explosion in the number of mappings. Instead, we store only one form in the index as
explained below.

Assume the existence of a set P of primitive elementary shapes that are disjoint (i.e. every
transition is in at most one of the primitive shapes). Thus, there is no ambiguity with regard to
the members of the set P . Further assume that every elementary shape is the \union" of some
subset of P (i.e. every transition in the given elementary shape is in exactly one of the primitive
elementary shape in the subset of P corresponding to the given elementary shape). In this case,
the transformation rule E , (any P1 . . . Pn) eliminates the elementary shape E in favor of the
corresponding primitive elementary shapes P1 . . . Pn for which there is no ambiguity.

Since there might not already be a set of primitive elementary shapes, it might be necessary
to add new primitive elementary shapes. In general, this requires an exponential number of new
primitive elementary shapes since there would need to be a new primitive elementary shape for
every possible non-empty subset of the original elementary shapes. Fortunately, there is a natural

14

su�cient condition that requires only a linear blowup in the number of new primitive elementary
shapes. If every primitive shape can be associated with an interval of real numbers, then there is
only linear blowup. To see this, imagine n elementary shapes. These give rise to 2n endpoints.
These endpoints de�ne at most 2n+1 disjoint consecutive intervals. (There may be fewer than
2n+1 intervals since some of the endpoints might coincide.) Add a new primitive symbol for each
such interval, giving rise to 2n+1 new primitive symbols2. Each of the original elementary shapes
can clearly be expressed as the \union" of the corresponding new primitive elementary shapes.
Intuitively, the fact that each of the original elementary shapes has an associated interval implies
that most of the \intersections" between the original elementary shapes is empty and thus require
no new primitive shapes, thereby controlling the blowup.

5.3. Shape Matching Using the Index

Notation In the following, P and D denote an elementary and a derived shape, respectively,
eval(D; [s; e]) denotes the evaluation of shape D within the interval [s; e], and p denotes the length
of the interval, i.e., p = e � s. The result of eval is a set of tuples [oid; start; length], where oid
is the object id, start is the start period, and length the length of the matched subsequence. The
notation shape[P]:start[x]:occur[y] means \get object identi�ers that have y occurrences of the
shape P starting from x", and represents index traversal. The tuples resulting from matching the
null sequence have start = s and length = 0.

5.3.1. Operations on Elementary Shapes. We �rst consider the evaluation of elementary
shapes and those shapes derived by applying multiples occurrences operators on elementary shapes.

� Elementary shape

eval(P; [s; e]) = f[oid : o; start : i; length : 1] j 9x; y (o 2 shape[P]:start[x]:occur[y])
^(max(s; x) � i < min(x+ y; e))g

� exact

eval(exact n P; [s; e]) = f[oid :o; start :max(s; x); length :n] j 9x; y (o 2 shape[P]:start[x]:occur[y])
^(x � e� n) ^ (s+ n � x+ y) ^ (min(e; y + x)�max(s; x) = n)g

When n = 0, we cannot use directly the index to get subsequences that match the null sequence.
Instead, they are computed by the following expression:

eval(exact 0 P; [s; e]) = f[oid : o; start : s; length : 0] j [o; s] 62 eval(atleast 1 P; [s; e])[oid; start]g

� atmost

eval(atmost n P; [s; e]) = f[oid : o; start :max(s; x); length :min(e; x+ y)�max(s; x)] j
9x; y (o 2 shape[P]:start[x]:occur[y])^ (x < n) ^ (s < x+ y)
^(min(e; x+ y)�max(s; x) � n)g

S
eval(exact 0 P; [s; e])

� atleast
2Extra primitive symbols may be needed to handle constraints on initial and �nal values.

15

eval(atleast n P; [s; e]) = f[oid : o; start : max(s; x); length :min(e; x+ y)�max(s; x)] j
9x; y (o 2 shape[P]:start[x]:occur[y])^ (x � e� n) ^ (s+ n � x+ y)
^(min(e; x+ y)�max(s; x) � n)g

When n = 0, eval(exact 0 P; [s; e]) must be \unioned" to the above expression.

� precisely, nomore, noless

The evaluation of (precisely/nomore/noless n P) within the interval [s; e] is similar to (exact/atmost
/atleast n P) except that n must be equal/greater /smaller than the sum of all P occurrences in
[s; e].

5.3.2. Operations on Derived Shapes. The evaluation of more complex forms of derived
shapes is performed using the index structure inductively.

� concat
The result of matching one shape constrains the interval in which the next shape should be searched.
The following expression implements it for n=2; for n>2, the evaluation is performed inductively:

eval(concat D1 D2; [s; e]) =1(PR1;PJ1) (eval(D1; [s; e]);
[
t2I1

eval(D2; [t; e]))

Here I1 denotes the interval where the matching of D2 starts. It results from the evaluation of
D1, and is given by I1 = [min(S1:start + S1:length); max(S1:start + S1:length)]. D1 is evaluated
�rst, then I1, then D2, followed by a join operation between resulting sets, S1 and S2, using the
predicate PR1 = (S1:oid = S2:oid) ^ (S2:start = S1:start + S1:length) and projection PJ1 =
[oid : S1:oid; start : S1:start; length : S1:length + S2:length]. The inductive evaluation for the
concatenation of n shapes stops either when the result of a join is empty or after all joins have been
performed. In the former case, the evaluation returns an empty set. Since Si elements are sorted
on oid, the join operations are implemented as merge-join.

� Multiple Occurrences Operators

We use the same evaluation schema as for the concat, replacing Di by D. The exact and atmost

operators have the same stopping condition as concat. The exact operator returns the result of
step n if the result of step n+1 is empty, and the empty result otherwise. The atmost operator
returns the result of step i if i�n and the result of step i+1 is empty. For atleast the evaluation
stops when a join returns an empty set. It returns the result of step i if i�n and the step i+1
returns empty result.

� any

eval((any D1 . . . Dn); [s; e])=
[

1�i�n

(eval(Di; [s; e]))

� in
The length parameter of in de�nes a family of intervals inside interval [s; e] where the match should
be performed. Thus, in is implemented by the following expression:

eval((in n D); [s; e]) =
[

s�i�e�n

(eval(D; [i; i+ n]))

16

The precisely, nomore, and noless operators have the same evaluation schema as exact, atmost,
and atleast, respectively, but a di�erent de�nition for the interval, predicate, and projection, be-
cause they allow gaps and overlap between their shape arguments. Their de�nitions for the interval,
predicate and projection require an o�set of at least one time period between two consecutive shapes.
On the other hand, inorder does not accept overlap, and its evaluation schema is the same as for
concat with the exception that its de�nition of the interval, predicate, and projection requires
that two consecutive shapes, D1 and D2, are separated by at least the length of the subsequence
matched by D1.

Since we allow gaps and overlap between shapes inside and, it is implemented as a join between
the set of subsequences that match D1 and D2. The shape order in the sequence does not matter.
The or operator over two shapes, D1 andD2, is implemented as the union of the set of subsequences
that match D1 and the set of sequences that match D2.

6. Conclusion

Summary. We presented SDL, a shape de�nition language for retrieving objects based on shapes
contained in the histories associated with the objects. SDL is designed to be a small, yet powerful,
language for expressing naturally and intuitively a rich variety of queries about the shapes found
in histories. SDL is equivalent in expressive power to the regular expressions when �nding if a
given sequence matches a particular shape. In the case of continuous matching [10], where one
�nds all the subsequences of a given sequence that match a particular shape, SDL provides context
information that regular expressions are unable to. Thus, SDL can discard the non-maximal
subsequences thereby eliminating useless clutter, whereas the regular expressions cannot provide
this service since they are unable to \look-ahead" to provide context information.

A novel feature of SDL is its ability to perform \blurry" matching where the user gives the
overall shape but not all the speci�c details. SDL is e�ciently implementable | its operators are
designed to limit non-determinism, which in turn reduces back-tracking. An SDL query expression
can be rewritten into a more e�cient form using transformation rules and its execution can be
speeded using our index structure.

Experience. A prototype of the shape query system described here has been implemented in
C++ on the AIX system as part of the Quest project at IBM. We tested it against two large
datasets in a data mining application. The �rst dataset was from a mail-order company and
consisted of �ve years of transaction history. The second dataset was from a market research
company that provides marketing information to the retail industry and consisted of three years
of point-of-sales data. The �rst dataset had roughly 2.9 million transactions, whereas the second
dataset had more than 6.8 million transactions.

In both the cases, we divided data on monthly basis and mined all association rules[1] for each
dataset. For rules discovered, we saved three parameter histories for each rule in the rulebase:
support, con�dence, and the product of support and con�dence values. We ran several complex
shape queries on these histories. In all cases, we got interactive response for the queries. The mining
algorithms such as [1] are excellent in taking gigabytes of data and reducing it into hundreds or
thousands of rules. However, the information generated is still too large and there is need to \mine

17

the mined rules". Having the capability to see the behavior of the mined rules over a period over
time and query the behavior led to discovery of new and interesting information. It also provided
useful cues for further exploration and querying of data.

Future Work. The work presented in this paper can be extended along several dimensions. We
mention a few here:

� Integration with a Relational Database System. Our current prototype is a stand-alone im-
plementation and focuses only on the new features introduced by the shape query language.
In a production system, the shape predicates must be integrated with the current facility
provided by a query language such as SQL.

� Further reduction in non-determinism. The any construct is the only one that introduces
non-determinism. Should any be eliminated in favor of first? For example (first P1 P2)
would not match P2 if P1 matched. Such a system would not have any non-determinism.
Alternatively, perhaps first should be added anyway since it produces a kind of conditional
matching.

� Recursive parameterized shapes. Currently, parameterized shape de�nitions are not allowed
to be recursive. Could this restriction be weakened? Lifting it entirely would increase the
expressive power and that would have implementation implications.

Acknowledgment. We thank Stefano Ceri and John Shafer for useful discussions.

7. Appendix A: Formal Semantics for SDL

Notation. Let H be a sequence of real values describing a history. Formally, a sequence is a
function from an interval into the real numbers where an interval is a �nite set of consecutive
non-negative integers. An interval is frequently denoted by [i; j]. By length(H), we indicate the
number of elements in the domain of the function that represents the sequence H. Every element in
H is identi�ed by its position in the sequence. The �rst element for the whole history is in position
0. We refer to the symbol in position i as H[i], with 0 � i < length(H).

Let S � H be a subsequence of H de�ned as follows. Each element in S is identi�ed by its
position in the original sequence H and elements in S are in the same order they are in H. The
�rst element of S is referred to as first(S), while the last as last(S).

The subsequence of H from position i to position j inclusive is represented as H[i; j], where
0 � i � j < length(H). Similarly, S[i; j], where first(S) � i � j � last(S), indicates a subsequence
of S. The length of S[i; j] is de�ned as length(S[i; j]) = j � i + 1. Notice that S[i; j][k; l] =
S[max(i; k); min(j; l)].

There exists an alphabet A of symbols and a mapping that can map the values of any two
consecutive elements of H into the symbols of A. Each symbol corresponds to an elementary
shape. An elementary shape induces a class containing all the subsequences of H of length 2 that
satisfy the de�nition of the corresponding alphabet. We use the notation s 2 P to indicate a
sequence s belonging to the class induced by P 's de�nition, where P is an elementary shape.

18

The ' operator is an application from a pair (S, P), where S is a sequence and P a shape,
to a possibly empty set of intervals. This resulting set of intervals contains all subsequences of
S that match the shape P . Notice that the de�nition implies that if [k; l] 2 H[i; j] ' P , then
i � k � l � j. The interval [k; k] denotes any null sequence since any elementary shape matches
only intervals that have a single transition (i.e. are of the form [k; k + 1]).

Elementary shapes.. Let H be a sequence and P one of the symbols in A. Then
[k; l] 2 H[i; j]' P i� H[k; l] 2 P and i � k � l = k + 1 � j.

Derived Shape any.. Let H be a sequence and P1 . . .Pn some shapes. Then

H[i; j] ' (any P1 P2 . . . Pn) =
n[

k=1

H[i; j] ' Pk.

Derived Shape concat.. The syntax of the concatenation operator is:

(concat P1 P2 . . . Pn) for n � 0.

The following formulas give the semantics:

H[i; j]' (concat) = f[k; k] j i � k � jg.

If n � 1, then [k;m] 2 H[i; j] ' (concat P1 . . . Pn) i� there exists an l such that
[k; l] 2 H[i; j] ' P1 and [l;m] 2 H[l; j]' (concat P2 . . . Pn).

Derived Shapes: exact, atleast, atmost.. The syntaxes are:

(exact n P)

(atleast n P)

(atmost n P)

where n � 0.

These operators provide richer forms of concatenation. Their semantics is described as follows.

[k; l] 2 H[i; j] ' (atleast n P) i�
:9m � k ([m; k] 2 H[i; k] ' P) and
:9m � l ([l;m] 2 H[l; j] ' P) and
9m � n ([k; l] 2 H[i; j] ' (concat P1 . . . Pm) where P1 = . . . = Pm = P)

[k; l] 2 H[i; j] ' (atmost n P) i�
:9m � k ([m; k] 2 H[i; k] ' P) and
:9m � l ([l;m] 2 H[l; j] ' P) and
9m � n ([k; l] 2 H[i; j] ' (concat P1 . . . Pm) where P1 = . . . = Pm = P)

[k; l] 2 H[i; j] ' (exact n P) i�
:9m � k ([m; k] 2 H[i; k] ' P) and
:9m � l ([l;m] 2 H[l; j] ' P) and
([k; l] 2 H[i; j] ' (concat P1 . . . Pn) where P1 = . . . = Pn = P)

19

Derived Shape: in.. The syntax is:

(in n P) where n � 0 indicates the length of the sequence in terms of time periods (transitions)
for which the condition expressed by the P argument must hold.

H[i; j]' (in n P) = f[k; k+ n] j i � k ^ k + n � j ^ [k; k+ n] 2 H[k; k + n] ' Pg.

Derived Shapes: nomore, noless, precisely.. The syntaxes are:

(nomore n P)

(noless n P)

(precisely n P)

where n � 0.

Even though these forms make sense in general, they are restricted to use within the in shape.

[k; l] 2 H[i; j] ' (noless n P) i� i � k � l � j and card(H[k; l]' P) � n.

[k; l] 2 H[i; j] ' (nomore n P) i� i � k � l � j and card(H[k; l]' P) � n.

[k; l] 2 H[i; j] ' (precisely n P) i� i � k � l � j and card(H[k; l] ' P) = n.

Derived Shape: inorder.. The syntax is:

(inorder P1 . . . Pn) for n � 0.

Even though this form makes sense in general, it is restricted to use within the in shape.

[k;m] 2 H[i; j] ' (inorder P1 . . . Pn) i� there exist k1; l1; . . . ; kn; ln such that
i = l0 � k � k1 � l1 � k2 � l2 . . . � kn � ln � m � j and [ku; lu] 2 H[lu�1; j] ' Pu for

1 � u � n.

Derived Shapes: and, or.. The syntaxes are:

(and P1 . . . Pn)

(or P1 . . . Pn)

where n � 0.

Even though these forms make sense in general, they are restricted to use within the in shape.

H[i; j]' (or P1 . . .Pn) = H[i; j] ' (any P1 . . .Pn).

H[i; j]' (and P1 P2 . . .Pn) =
n\

k=1

H[i; j]' Pk .

20

8. Appendix B: Exponential Results

It is well known that adding conjunction to regular expressions does not increase expressive
power but does allow exponential compaction of some expressions (see Chapter 3 exercises in [8]).
Permutation expressions are an example of this well-known exponential compaction. The proof
that permutation expressions require at least exponential size (Theorem 8.6) can be adapted to
show that (under some separability assumptions) every blurry shape in a very large and natural
class requires exponential size to express using regular expressions! This natural class of blurry
queries includes the conjunction of precisely; noless shapes (Theorem 8.3).

We start with a little bit of notation. Let A be a set of disjoint elementary shapes. (See
Section 5.2 for a discussion of making the elementary shapes disjoint.) A forms the set of characters
from which strings are built. Juxtaposition is used to denote the concatenation of two strings. L(s)
denotes the length of the string s. Each string implicitly de�nes a shape that is the concatenation
of its constituent elementary shapes. Instead of histories, we use an equivalent string representation
since whether a shape matches a history depends only on its corresponding string (which is unique
by the disjointness assumption.) A string based treatment (rather than a history based treatment)
facilitates comparison with regular expression notation. (Note that the length of the string is one
less than the length of the corresponding history.) We use NP (s) to denote the number (counting
multiplicities) of substrings of s that match P . To be a bit more formal, let H[0; L(s)] be any
history that has s as its associated string. (The rest of the discussion is independent of the choice
of history.) NP (s) = card(H[0; L(s)] ' P). To put this in string terms, NP (s) = card(f[k; l)j0 �
k � l � L(s) ^ s[k; l) matches Pg where s[k; l) denotes the substring starting at k and ending
just before l. Thus, s[k; k) represents the empty substring starting at k. Since atleast, atmost
and exact have greedy semantics, matching has a contextual component to it; so two substrings
that have exactly the same characters in the same order might have di�erent matching behavior
because they occur in di�erent contexts.

We call a symbol in a regular expression \primitive" i� it is a member of the alphabet. In other
words, the \combining" symbols (such as \j", concatenation, parentheses, and *") are not counted
as primitive symbols. Clearly, showing that exponentially many primitive symbols are needed is
stronger than showing exponential size is required since the size of a regular expression is at least
as large as the number of (occurrences of) primitive symbols within it.

8.1. Main Result

When a divider (see De�nition 8.1) for a shape occurs in a history, the divider has the e�ect
of dividing the history into two pieces for the purpose of counting the number of matches to the
shape. In addition, it should be the case that a divider (even when concatenated with a portion of
itself) does not match the shape.

De�nition 8.1. Let P be a shape and s be a string. Then s is a divider for P i�

1. NP (s1ss2) = NP (s1s) +NP (ss2) for all strings s1; s2, and

2. if s0 is any pre�x of s, then NP (ss
0) = 0.

21

Note that the entire sequence s is a pre�x of itself so property 2 in De�nition 8.1 implies that
NP (ss) = 0. If a1; a2 are distinct characters, then a2a1 is an example of a divider for the shape
(concat (atleast 2 a1) (atleast 2 a2)).

We use � to denote the \equality tester" function de�ned as �(i; j) =

(
1 if i = j
0 otherwise.

De�nition 8.2. Let u; v be positive integers. Let p; q be non-negative integers.
Shapes ((P1; . . . ; Pp); (Q1; . . . ; Qq)) are called (u; v)-0
i� there exist non-empty strings s0; s1; . . . ; sp such that the following all hold
(for all j; j0 2 f1; . . . ; pg, and k 2 f1; . . . ; qg)

1. L(s0) � u and s0 is a divider for every shape Pj ; Qk.

2. L(sj) � v and NPj (s0sj0s0) = �(j; j0) and NQk
(s0sjs0) = 0

The idea behind part 1 is that s0 is a divider for all the shapes and u is an upper bound to the
length of that divider. The idea behind part 2 is that the string sj serves to distinguish each Pj
shape from all the other Pj0 shapes as well as the all Qk shapes by providing a string that matches
only Pj . Furthermore, v is an upper bound to the length of every string that is used to distinguish
a Pj . The Qk shapes do not need distinguishing strings of their own because, in the proof of the
Exponential Blowup Theorem, they only occur inside of the nomore construct and never force a
string to appear in a match. It is worth remarking that if Pj and Pj0 are equivalent shapes (for
j 6= j0), then it is never possible to separate them since neither has a string to distinguish it from
the other.

We next state the main result of this Appendix. Consider the blurry query
(inm (and (precisely j1 P1) . . . (precisely jp Pp) (noless jp+1 Pp+1) . . .(noless jp+p0 Pp+p0))).
Theorem 8.3 shows that, provided certain separability conditions are met, the size of an equivalent
regular expression grows exponentially in the number of conjuncts! Note that nomore subshapes
are allowed to appear but do not add to the exponential blowup.

Theorem 8.3 (Exponential Blowup Theorem). For all non-negative integers p; p0; q; k1; . . . ; kq,
and all positive integers u; v; j1; . . . ; jp+p0,
and all (u; v)-separable shapes ((P1; . . . ; Pp+p0), (Q1; . . . ; Qq)),
and all integers m � 2(u+ v)(j1 + . . . + jp+p0) + 2u,
every regular expression equivalent to
(in m (and (precisely j1 P1) . . . (precisely jp Pp)

(noless jp+1 Pp+1) . . . (noless jp Pp+p0)
(nomore k1 Q1) . . . (nomore kq Qq)))

has at least m
2u � 2

p+p0 occurrences of primitive symbols.

Proof: This theorem follows easily from Theorem 8.7 by noting that in this theorem, j1; . . . ; jp+p0

are required to be positive (rather than merely non-negative as in Theorem 8.7). Hence 2p+p
0

�
(1 + j1) . . . (1 + jp+p0). 2

In Theorem 8.3, any shape P 0
0 equivalent to the given one is su�cient since any regular expression

equivalent to P 0
0 is equivalent to the blurry shape given in Theorem 8.3. In particular, the order

22

of the conjuncts can be changed so that the precisely, noless, and nomore subshapes can be
intermixed without a�ecting the conclusion of Theorem 8.3. The restriction that ji be positive
is not particularly burdensome since (precisely 0 P) can be translated to (noless 0 P) and
(atleast 0 P) can be dropped without a�ecting the result. Note that if or is used instead of
and to combine subshapes, there is no exponential blowup since regular expressions for each of the
disjuncts can be combined easily using the \j" regular expression disjunction operator.

8.2. Separability Considerations

One of the key issues in separating shapes is the ability to �nd dividers. The next proposition
gives an easy su�cient condition for �nding dividers.

Proposition 8.4. Let a0 be an elementary shape. If P is a shape built from the elementary
shapes other than a0 using the constructs (concat P1 . . .Pn), (any P1 . . .Pn), (atleast n P0), and
(exact n P0) where n � 1, then a0 is a divider for P .

Proof: First note that P never matches the empty string since n � 1 and the atmost construct
is omitted. It is easy to check by induction on the structure of P that a string s in the either the
context of s0ss1a0s2 or the context of s2a0s0ss1 matches P i� it matches in the context of s0ss1
and that no string containing a0 ever matches P . The result clearly follows. 2

Of course, separability is not necessary for the exponential blowup in Theorem 8.3. For example,
suppose the query is (inm (and . . . (noless 3 P)(nomore 3 P) . . .)). Separability clearly fails since
there is no string to distinguish the noless shape from the nomore shape. If this is the only source
of non-separability, then the query (in m (and . . . (precisely 3 P) . . .)) has exponential blowup
since Theorem 8.3 applies to the new shape and it is clearly equivalent to the original one.

Even though there are many cases where separability fails but the regular expression still grows
exponentially, the separability condition of Theorem 8.3 is not super
uous. For example, consider
the blurry query P0 = (in m (and (precisely k1 P1) . . . (precisely kn Pn))) where P1; . . . ; Pn
are all equivalent shapes. (Note that the shapes P1; . . . ; Pn might have very di�erent forms since
equivalent shapes need not have the same form. Even though equivalence of shapes is decid-
able (since each shape is equivalent to a regular expression), there is no easy syntactic test for
equivalence.) It is clear that for n � 2, the shapes (P1; . . . ; Pn) are not separable if they are
equivalent; therefore, Theorem 8.3 does not apply in this case. If ki 6= kj for some i; j, then P0 is
never satis�ed; in this case, P0 is equivalent to (any) which has no primitive symbols and never
matches anything. If all the ki are equal, then P0 is equivalent to (in m (precisely k1 P1))
and there is no dependence on the number of conjuncts (n) in the shape P0 since all the con-
juncts are redundant. For example, in the case where there are only two elementary shapes a0; a1,
the query (in m (and (precisely 1 a1) . . . (precisely 1 a1))) which is equivalent to the query
(in m (precisely 1 a1)) can be expressed with a regular expression with at most m2 primitive
symbols since there are exactly m di�erent strings (one for each possible position of a1 amidstm�1
occurences of a0) all of length exactly m that match (in m (precisely 1 a1)).

23

8.3. Proof of Main Result

Our next major goal is to prove Theorem 8.7 upon which Theorem 8.3 is based. Let's begin by
reviewing the proof that every permutation expression requires at least exponential size to express
in regular expression notation.

The next lemma gives us a way distinguishing occurences of primitive symbols within regular
expressions. Note that the \!" marker always follows a character and the � function picks out an
occurences of that character in the regular expression. The occurences so chosen \participates" in
the matching of the string at the point of the given character.

Lemma 8.5. For every regular expression r, there is a function �r that returns an occurrence of
a primitive symbol in r such that the following all hold:

1. the domain of �r is the set of all items of the form s0!s1 where s0 is a non-empty string and
the concatenation s0s1 matches r

2. �r(s0!s1) is an occurrence (in r) of the last character in s0

3. if �r(s0!s1) = �r(s
0
0!s

0
1), then s0s

0
1 matches the regular expression r as well.

Proof: First we inductively construct an NFA based on r that will be denoted by N(r). Every
state will be tagged either by � or by one of the characters in the alphabet. The tag indicates that
every arc into that state will have as its label the tag for that state. Furthermore, there will be a
one-to-one correspondence between the occurrences of primitive symbols in r and the states tagged
with the primitive symbols. Inductively, all NFAs will have a start state and a single accept state
and both states will be tagged with �. If ai is a primitive symbol in r, create the NFA N(ai) with
three states: a start state (tagged with �), an accept state (tagged with �), and an intermediate
state (tagged with ai). Let there be an � arc from the intermediate state to the accept state and
an arc labeled with ai from the start state to the intermediate state. Notice that throughout the
rest of the proof, no other states tagged by ai will be created nor will any other copies of this state
be made. If the regular expression is (concat r1 r2), create N(concat r1 r2) by drawing an � arc
from the accept state of N(r1) to the start state of N(r2), let the start state of N(concat r1 r2) be
the start state of N(r1), and let the accept state of N(concat r1 r2) be the accept state of N(r2).
If the regular expression is r1 j r2, create a new start state and a new accept state (both tagged
with �) and add � arcs from the new start state to the start states of N(r1) and N(r2) and add �

arcs from the accept states of N(r1) and N(r2) to the new accept state. If the regular expression
is r�1, form N(r�1) simply by adding an � arc from the accept state of N(r1) to the start state of
N(r1). Let a0 be the last primitive symbol in s0. De�ne �r(s0!s1) to be that occurrence of a0 that
corresponds to the state tagged with a0 that is entered after matching the s0 portion of the string
s0s1. Since N(r) is a non-deterministic �nite automaton, this choice of state is not necessarily
unique; any state that leads to acceptance when the remainder of the string (i.e., s1) is scanned
will do. It is clear that the �rst two properties are met. Assume that �r(s0!s1) = �r(s

0
0!s1). It is

clear that after seeing either s0 or s00 a state is entered from which either s1 or s01 can complete the
journey to an accept state. Hence the third property is true as well. 2

Theorem 8.6. Every permutation (on n characters) regular expression has at least n � 2n�1

primitive symbols.

24

Proof: Let r be regular expression that is permutation expression for the n primitive symbols
a1; . . . ; an. We show that there are at least 2n�1 occurences of every symbol a1; . . . ; an from which
the result clearly follows. For example, we show that there at least 2n�1 occurences of a1. Given
a subset S of fa2; . . . ; ang, let P (S) be any (arbitrarily chosen) permutation expression on the
elements of S. Given a subset S, de�ne F (S) = �r(P (S)a1!P (S0)) where S0 = fa2; . . . ; ang � S.
By Lemma 8.5, it is clear that F (S) picks out an occurrence of a1 in r. Since there are 2n�1

subsets of fa2; . . . ; ang, it is clearly su�cient to show that F (S) 6= F (T) if S 6= T . Suppose that
F (S) = F (T). Then by Lemma 8.5, P (S)a1P (T

0) matches r. Since r matches only permutations,
it follows that T 0 is the complement of S from which it follows that T = S. Hence, F (S) 6= F (T)
if S 6= T from which the result follows. 2

Theorem 8.7. For all non-negative integers p; p0; q; j1; . . . ; jp+p0; k1; . . . ; kq,
and all positive integers u; v,
and all (u; v)-separable shapes ((P1; . . . ; Pp+p0); (Q1; . . . ; Qq)),
and all integers m � 2(u+ v)(j1 + . . . + jp+p0) + 2u,
every regular expression equivalent to
(in m (and (precisely j1 P1) . . . (precisely jp Pp)

(noless jp+1 Pp+1) . . . (noless jp+p0 Pp+p0)
(nomore k1 Q1) . . . (nomore kq Qq)))

has a primitive symbol that has at least m
2u � ((1 + j1) . . . (1 + jp+p0)) occurrences.

Proof: Let P0 be the blurry shape in the statement of the theorem.
Let r be a regular expression that is equivalent to P0.
Let s0; s1; . . . ; sp+p0 be the strings (in De�nition 8.2) that (u; v)-separate the shapes.
Let a0 = s0 and ad = sds0 for d = 1; . . . ; p+ p0.
Let m0 = L(s0) + j1L(a1) + . . . + jp+p0L(ap+p0).
Note that m0 � u+ j1(u+ v) + . . . + jp+p0(u+ v) � m

2 .
Let j0 = bm�m0

L(s0)
c.

Let t0 = m�m0 � j0L(s0). Clearly, 0 � t0 < L(s0). Let t be the �rst t0 characters in s0.

Let V = f0; . . . ; j0g � . . .� f0; . . . ; jp+p0g. Hence every element of V is a vector of 1 + p + p0

integers. Addition on V is de�ned as componentwise addition. For each x 2 V , we use ~x to denote
the complement of x under component addition. That is, x+ ~x = (j0; . . . ; jp+p0).

For each x 2 V , let S(x) be the string ax00 . . .a
xp+p0

p+p0 where sd represents d copies of the string s.
It is clear that L(S(x)) = x0L(a0) + . . . + xp+p0L(ap+p0).

Our next goal is to show for all x; y 2 V that NPd(s0S(x)S(y)t) = xd + yd for d = 1; . . . ; p+ p0

and that NQd
(s0S(x)S(y)t) = 0 for d = 1; . . . ; q. For the moment, let R be any of the relevant

shapes (i.e. one of the shapes P1; . . . ; Pp+p0; Q1; . . . ; Qq). All strings ad have the form �ds0 for some
string �d. Hence, for any string s0 and d = 0; . . . ; p+ p0, we can use the fact that s0 is a divider for
R to see that NR(s0ads

0) = NR(s0�ds0s
0) = NR(s0�ds0) +NR(s0s

0) = NR(s0ad) +NR(s0s
0). This

fact can be used inductively to show that NR(s0S(x)S(y)t) = (x0 + y0)NR(s0a0) + . . . + (xp+p0 +
yp+p0)NR(s0ap+p0) +NR(s0t). By property 2 of dividers and since a0 is a pre�x of s0, NR(s0a0) =
NR(s0t) = 0. By property 2 of separability, it follows that NPd0

(s0ad) = NPd0
(s0sds0) = �(d0; d)

and NQd0
(s0ad) = NQd0

(s0sds0) = 0. Putting these facts together shows that NPd(s0S(x)S(y)t) =
xd + yd for d = 1; . . . ; p+ p0 and that NQd

(s0S(x)S(y)t) = 0 for d = 1; . . . ; q.

25

These facts make it clear that s0S(x)S(~x)t satis�es all the precisely; noless; nomore conditions
necessary to satisfy P0 so it su�ces to check that s0S(x)S(~x)t has the right length.

L(s0S(x)S(~x)t)
= L(s0) + (x0L(a0) + . . . + xp+p0L(ap+p0)) + (~x0L(a0) + . . . + ~xp+p0L(ap+p0)) + L(t)
= L(s0) + (j0L(a0) + j1L(a1) + . . . + jp+p0L(ap+p0)) + L(t)
= j0L(s0) + (L(s0) + j1L(a0) + . . . + jp+p0L(ap+p0)) + t0
= j0L(a0) +m0 + (m�m0 � j0L(s0))
= m.
Therefore, s0S(x)S(~x)t matches r.

Let c0 be the last character of s0. We can de�ne a function F that for each x 2 V produces
an occurrence of c0 in r by de�ning F (x) = �r(s0S(x)!S(~x)t) where � is the function given in
Lemma 8.5. By part 2 of Lemma 8.5, F (v) is an occurrence (in r) of c0. Our next goal is to show
that F is injective (i.e. one-to-one). Assume that F (x) = F (y) with the goal of showing that x = y.
Hence, �r(s0S(x)!S(~x)t) = F (x) = F (y) = �r(s0S(y)!S(~y)t). By part 3 of Lemma 8.5, s0S(x)S(~y)t
matches r. Therefore, for d = 1; . . . ; p+p0, we have that yd+ ~yd = jd � NPd(s0S(x)S(~y)t) = xd+ ~yd
and so yd � xd. A symmetric argument shows that xd � yd. Thus, for d = 1; . . . ; p+ p0, we have
that xd = yd. By length restrictions, L(s0) + L(S(y)) + L(S(~y)) + L(t) = L(s0S(y)S(~y)t) = m =
L(s0S(x)S(~y)t) = L(s0)+L(S(x))+L(S(~y))+L(t); from which it follows that L(S(y)) = L(S(x)).
Since xd = yd for d = 1; . . . ; p+ p0 and L(S(x)) = L(S(y)), it follows that x0 = y0 and hence that
x = y. Therefore, r has at least as many occurrences of c0 as there are elements in the domain of
F . But V is the domain of F and clearly V has exactly (1+ j0) � ((1+ j1) � . . . � (1+ jp+p0)) elements.

We can bound 1 + j0 as follows: 1 + j0 = 1+ bm�m0

L(s0)
c � dm�m0

L(s0)
e � m�m0

L(s0)
� m=2

u = m
2u from which

the result follows. 2

8.4. Some Exponential Upper Bounds

The proof that regular expressions are exponentially bigger than the corresponding blurry shapes
(Theorem 8.3) is based on the proof that permutation expressions require exponential size to express
using regular expressions (Theorem 8.6). Even this \exponential blowup" result slightly understates
the relative advantage of blurry shapes since the straightforward permutation expression requires
factorial size in regular expression notation. It is only through a certain amount of cleverness (with
a corresponding potential loss of clarity) that the permutation regular expression can be reduced
to exponential size (Theorem 8.8).

Theorem 8.8. For every n � 1, there is a permutation (on n characters) regular expression of
size at most 8 � 4n.

Proof: This is proven by induction on n. Let f(n) be the size of the smallest permutation
expression on n characters. We prove by induction on n that f(n) � 8 � 4n. For n = 1, the
result is clear since the expression a1 is a 1-permutation expression and has size 1. Therefore,
f(1) = 1 � 32 = 8 � 41 = 8 � 4n.

For the inductive step, we use the well-known divide and conquer technique by dividing n in
half and writing permutation expressions for each half. Assume that m < n. Use P (b1; . . . ; bm)
to denote a permutation expression on the characters b1; . . . ; bm. A permutation expression for

26

a1; . . . ; an can be obtained as
(concat (P (fa1; . . . ; amg)) (P (fam+1; . . . ; ang)))

j . . . j (concat (P (fan�m+1; . . . ; ang)) (P (fa1; . . . ; an�mg)))
where each m element subset and its n � m element complement participates as a concat pair.
Let's count the symbols in this expression. Since it is sensible to be lavish when counting in an
upper bound proof, we will include parentheses in the counting. Each concat subexpression has
the form (concat (:::)(:::)) and has size 7 + f(m) + f(n�m). Thus, ignoring for the moment the
\j" symbols, the size of the expression is (f(m)+f(n�m)+7) �

�n
m

�
. There are

�n
m

�
�1 occurrences

of the symbol \j". Counting this as 3 symbols (to lavishly include an extra set of parentheses),
the \j" symbols add at most 3 �

�n
m

�
to the size of the permutation expression. This shows that

f(n) � (f(m)+ f(n�m)+ 10) �
�n
m

�
provided that 0 < m < n. For n = 2, the calculation proceeds

as follows: f(n) = f(2) � (f(1) + f(1) + 10) �
�2
1

�
= 12 � 2 = 24 � 8 � 16 = 8 � 4n.

Before continuing with the inductive calculation, it is helpful to recall some basic combinatoric
facts. It is easy to see by induction that, for m � 2,

�2m
m

�
� 3

2 � 4
m�1 since

�4
2

�
= 3

2 � 4
1 and�2(m+1)

(m+1)

�
=
�2m+2
m+1

�
= ((2m+2)(2m+1)

(m+1)(m+1)) �
�2m
m

�
� (2 � 2) � (32 � 4

m�1) = 3
2 � 4

(m+1)�1. It is also easy to by

induction that, for m � 1,
�2m+1

m

�
� 3 � 4m�1.

The inductive calculation of f(n) for n � 3 breaks down into two cases depending on whether
n is even or odd.
If n = 2m, then 2 � m < n and
f(n) � (f(m) + f(n �m) + 10) �

�n
m

�
= (f(m) + f(m) + 10) �

�2m
m

�
� (8 � 4m + 8 � 4m + 10

128 � 8 � 4
m) � (32 � 4

m�1)
= 8 � (2 + 10

128) � 4
m � (32 � 4

m�1)
= 8 � (3 + 15

128) � 4
2m�1

� 8 � (4) � 42m�1

= 8 � 42m

= 8 � 4n

If n = 2m+ 1, then 1 � m < n and
f(n) � (f(m) + f(n �m) + 10) �

�n
m

�
= (f(m) + f(m+ 1) + 10) �

�2m+1
m

�
� (8 � 4m + 8 � 4m+1 + 10

32 � 8 � 4
m) � (3 � 4m�1)

= 8 � (1 + 4 + 10
32) � 4

m � (3 � 4m�1)
= 8 � (15 + 30

32) � 4
2m�1

� 8 � (42) � 42m�1

= 8 � 42m+1

= 8 � 4n

In either case, f(n) � 8 � 4n as desired. 2

Theorem 8.9 shows that, for every possible number of conjuncts, a situation can be found in
which the size of the regular expression equivalent to a blurry query is at most polynomially bigger
than the exponential size required by Theorem 8.3. While this does not preclude better lower
bounds if the alphabet is held �xed or m is allowed to grow without limits, it does suggest that the
exponential lower bound given in Theorem 8.3 is not overly conservative.

27

Theorem 8.9. For every positive integer p, there exists positive integers u; v; j1; . . . ; jp, an alphabet
A, (u,v)-separable shapes ((P1; . . . ; Pp); ()), a positive integer m � 2(u+ v)(j1+ . . .+ jp)+ 2u, and
a regular expression r of size at most [(m2u) � 2

p]8 that is equivalent to
(in m (and (precisely j1 P1) . . . (precisely jp Pp))).

Proof: Let u = v = j1 = . . . = jp = 1. LetA consist of p+1 disjoint elementary shapes a0; . . . ; ap.
Let the shape Pi be ai for i = 1; . . . ; p. Then the strings a0; a1; . . . ; ap separate ((P1; . . . ; Pp); ()).
Since every string ai has length 1, the strings (1; 1)-separate (P1; . . . ; Pp). Let m = 4p + 2. By
Theorem 8.8, we can �nd a regular expression r0 of size at most 8 � 4m that is a permutation
expression of the characters fa10; . . . ; a

m�p
0 ; a1; . . .apg. Let r be the regular expression that results

from replacing (in r0) each occurrence of ai0 by a0. It is clear that r also has size 8 � 4m. It is easy
to see that r is equivalent to the shape P 0

0 = (in m (and (precisely 1 a1) . . . (precisely 1 an)))
since any match of P 0

0 must have exactly one occurrence of each ai for i � 1 and exactly m � p

occurences of a0 (the only remaining primitive symbol) to �ll the string out to length exactly m.
Since Pi = ai and j1 = . . . = jp = 1, it is easy to see that P 0

0 (and hence r) is equivalent to the
shape (in m (and (precisely j1 P1) . . . (precisely jp Pp))). We can obtain the desired upper
bound to the size of r as follows: 8 � 4m = 8 � 44p+2 = 8 � 16 � 44p = 27 � 28p � 38 � 28p = [3 � 2p]8

= [(4�1+22�1) � 2p]8 � [(4p+22u) � 2p]8 = [(m2u) � 2
p]8. 2

8.5. Regular Expressions with Exponentiation

It is well-known that exponentiation does not increase the expressive power of regular expres-
sions but does allow some compaction. Regular expressions augmented with exponentiation permits
expressions of the form rk for some exponent k. The meaning of rk is r . . .r where there are k copies
of r. For example, a249 is much more compact than 249 copies of a concatenated together. It turns
out that even augmenting regular expressions with exponentiation does not stop the exponential
growth of regular expressions equivalent to a blurry shape! Before proving this in Theorem 8.11, it
is helpful to begin with a lemma.

Lemma 8.10. If r0 is a regular expression augmented with exponentiation such that every string
that matches r0 has length at most m, then there is a regular expression r that is equivalent to r0

and has at most m times as many primitive symbols as r0.

Proof: Form r from r0 by replacing each occurrence of ri0 by (concat r0 . . .r0) where there
are i occurences of r0 in the concat construct. Notice that if r0 matches at least one string of
length k, then both versions of ri0 match at least one string of length i � k. Also note that this
expansion creates i copies of every primitive symbol within r0. It follows that if there are i copies
of a primitive symbol in the �nal result, then there is a string of length at least i. Hence, after the
above expansion process, no occurrence of a primitive symbol in r0 can be expanded to more than
m copies so the result follows. 2

Theorem 8.11. For all non-negative integers p; p0; q; k1; . . . ; kq,
and all positive integers u; v; j1; . . . ; jp+p0,
and all (u; v)-separable shapes ((P1; . . . ; Pp+p0), (Q1; . . . ; Qq)),
and all integers m � 2(u+ v)(j1 + . . . + jp+p0) + 2u,

28

every regular expression with exponentiation equivalent to
(in m (and (precisely j1 P1) . . . (precisely jp Pp)

(noless jp+1 Pp+1) . . . (noless jp Pp+p0)
(nomore k1 Q1) . . . (nomore kq Qq)))

has at least 1
2u � 2

p+p0 occurrences of primitive symbols.

Proof: Suppose not. Let P0 be the shape
(in m (and (precisely j1 P1) . . . (precisely jp Pp)

(noless jp+1 Pp+1) . . . (noless jp Pp+p0)
(nomore k1 Q1) . . . (nomore kq Qq)))

and let r0 be a regular expression augmented with exponentiation equivalent to P0 that has size
strictly less than (1

2u) � 2
p+p0 primitive symbols. Since every match to r0 has length exactly m,

Lemma 8.10 applies. Hence there is a regular expression r equivalent to r0 that has strictly less
than m � (1

2u) �2
p+p0 primitive symbols. Thus, r is a regular expression equivalent to P0 with strictly

less than (m2u) � 2
p+p0 primitive symbols. This contradicts Theorem 8.3. Hence, the result follows.

2

9. Appendix C

In this appendix, a formal comparison is made between the expressive power of regular expres-
sions and the expressive power of SDL with regard to regular matching. As discussed in Section 5.2,
it su�ces to consider the case where all the elementary shapes are disjoint. Call this set of disjoint
elementary shapes A.

The next theorem shows that the SDL language is at least expressive as regular expressions
for regular matching. Since SDL has any, concat, and atleast, this is not a surprising result.
The main di�culty comes about since the atleast operator has di�erent semantics in SDL than
it does for regular expressions. The proof that the set of strings accepted by a deterministic �nite
automaton can be described by a regular expression is adapted in Theorem 9.1 to prove a similar
result for shapes. This shape is constructed in such a way so as to ensure that the atleast operator
is used only in places where its greedy SDL semantics coincide with the standard non-greedy regular
expression semantics.

Theorem 9.1. For every regular expression r, there exists a shape s in SDL such that a history
matches r i� it matches s.

Proof: Given a regular expression r, let D be a deterministic �nite automaton that matches
the same set of strings as r does. Let Oa

b = (any s1 . . .sm) where s1; . . . ; sm are the primitive
symbols that allow a transition from state a to state b. If U = fa; b1; . . . ; bmg is a set of states, let
U 0 = fb1; . . . ; bmg and de�ne by induction on m, the shapes la(U) and La(U) as follows:
la(U) = (any Oa

a (concat Oa
b1

Lb1(U 0) Ob1
a) . . . (concat Oa

bm
Lbm(U 0) Obm

a))

and La(U) = (atleast 0 la(U)).
It is easy to see that la(U) matches exactly those non-empty strings that, when starting from state
a, terminate in state a while visiting only the states in U �fag during intermediate stops. It is also
easy to see that La(U) matches exactly those strings that, when starting from state a, terminate
in state a while visiting only the states in U . Notice that the only place that atleast occurs is

29

in La(U). Hence the �rst symbol of a non-empty string that matches La(U) must be a primitive
symbol that transit from state a to some state in U .

Denote by B the set of all states. Given a sequence of states (b1; . . . ; bm) where no state is
repeated, de�ne the shape
P(b1; . . . ; bm) = (concat Lb1(fb1g) O

b1
b2

. . . Lbm�1(fb1; . . . ; bm�1g) O
bm�1

bm
Lbm(B)).

Notice that since Obi
bi+1

represents a transition from state bi to a state outside of fb1; . . . ; big, any

symbol that matches the shape Obi
bi+1

is not a pre�x of any match of Lbi(fb1; . . . ; big). Therefore,

P(b1; . . . ; bm) matches exactly those strings that when starting in state b1, the ith state visited (for
i � m) is bi; since a state might be visited several times, only the �rst visit counts; after state bm
is reached any states may be visited provided the string terminates in state bm.

Finally, let E = (any . . . P(b1; . . . ; bm) . . .) where m is less than or equal to the number of
states in the D, b1 is the start state, and bm is some accepting state. It is clear that E is a shape
that matches exactly those strings accepted by D. 2

A possible change to SDL is to restrict any to match only one of the alternatives (say the �rst
listed that matches). The above construction shows that this change does not lose any expressive
power since in the two uses of any in the proof of Theorem 9.1 (in the de�nition of Oa

b and E), no
two di�erent alternatives in the any clause share a string in their respective match sets.

Even though the general construction given in the proof of Theorem 9.1 involves an explo-
sion in the size of a shape, in practice this is rarely a problem. Given a regular expression,
it is quite possible that the corresponding SDL shape has the same meaning and in this case,
there is no explosion at all. Furthermore, even if the regular expression and the corresponding
shape do not have the same semantics, there is frequently a simple transformation that produces
a shape that has the same meaning as the regular expression. For example, consider the shape
(concat (atleast 0 up) up down). In regular expression semantics, this matches all strings of the
form (upn down) for some n � 1. However, in shape semantics, the shape never matches any string
since every up is gobbled up by the atleast expression. A simple solution is to move the up into the
atleast clause giving the shape (concat (atleast 1 up) down) which has the same meaning
as the corresponding regular expression. Slightly complicated versions of such transformations are
frequently possible and so the explosion in transforming a regular expression to a shape is rarely a
problem.

Theorem 9.1 shows that SDL shapes are at least as expressive as regular expressions. Con-
versely, Theorem 9.4 shows that regular expressions are at least as expressive as SDL shapes.
Before proving Theorem 9.4, it is helpful to review the proof of one the most basic and well-known
([8]) theorems about regular expressions, namely that every regular expression has a DFA that ac-
cepts exactly the set of strings matched by the regular expression. Since the proof of Theorem 9.4
is di�erent in style than the standard proof, it is a good idea to reprove the basic theorem (with
which everyone is familiar) as a warmup exercise. The standard proof of Theorem 9.3 may be found
in a textbook covering automaton such as [8]. Before giving our version of the proof, it is helpful
to give an example.

Example 9.2. Given the regular expression r = (concat (star a) (any a (concat b c))) where
a; b; c are members of the alphabet A, we construct a DFA. Every state of the DFA will be a
�nite set of occurences of primitive symbols. It is helpful to have a new primitive symbol m

30

that serves as an endmarker. An accepting state one is one that contains the endmarker m. Let
r0 = (concat (concat (star a1) (any a2 (concat b c))) m) where subscripts have been put on
the two occurences of the primitive symbol a to allow us to distinguish them in this discussion.
The basic idea of a state is that the occurences of primitive symbols that comprise a state are the
\next" symbol that could be scanned. After the symbol is scanned, rewriting is performed to �nd
the next possible symbols. Rewriting is performed by moving a pointer indicated with the notation
\!". The precise rules for moving the pointer are given in the proof. The initial phase starts with
the pointer at the beginning of r0 and it is moved until it encounters a primitive symbol. Here is
an example of that rewriting process:

!(concat (concat (star a1) (any a2 (concat b c))) m)
) (concat !(concat (star a1) (any a2 (concat b c))) m)
) (concat (concat !(star a1) (any a2 (concat b c))) m)
) (concat (concat (star !a1) (any a2 (concat b c))) m)
So a1 is in the initial state.

!(concat (concat (star a1) (any a2 (concat b c))) m)
) (concat !(concat (star a1) (any a2 (concat b c))) m)
) (concat (concat !(star a1) (any a2 (concat b c))) m)
) (concat (concat (star a1)! (any a2 (concat b c))) m)
) (concat (concat (star a1) !(any a2 (concat b c))) m)
) (concat (concat (star a1) (any !a2 (concat b c))) m)
So a2 is in the initial state.

!(concat (concat (star a1) (any a2 (concat b c))) m)
) (concat !(concat (star a1) (any a2 (concat b c))) m)
) (concat (concat !(star a1) (any a2 (concat b c))) m)
) (concat (concat (star a1)! (any a2 (concat b c))) m)
) (concat (concat (star a1) !(any a2 (concat b c))) m)
) (concat (concat (star a1) (any a2 !(concat b c))) m)
) (concat (concat (star a1) (any a2 (concat !b c))) m)
So b is in the initial state.

The initial state is fa1; a2; bg. Consider running the DFA on the string abcd. Since the end-
marker m is not in the initial state, the empty string is not accepted by the DFA. Next we scan
the symbol a by moving the pointer past all the occurences of a that were in the previous state
and advance those pointer until new symbols are encountered as follows.

First we move the pointer past a2.
(concat (concat (star a1) (any a2! (concat b c))) m)

) (concat (concat (star a1) (any a2 (concat b c))!) m)
) (concat (concat (star a1) (any a2 (concat b c)))! m)
) (concat (concat (star a1) (any a2 (concat b c))) !m)
So m is the next state.

Next we move the pointer past a1.
(concat (concat (star a1!) (any a2 (concat b c))) m)

) (concat (concat !(star a1) (any a2 (concat b c))) m)
) (concat (concat (star !a1) (any a2 (concat b c))) m)
So a1 is the next state.

31

(concat (concat (star a1!) (any a2 (concat b c))) m)
) (concat (concat !(star a1) (any a2 (concat b c))) m)
) (concat (concat (star a1)! (any a2 (concat b c))) m)
) (concat (concat (star a1) !(any a2 (concat b c))) m)
) (concat (concat (star a1) (any !a2 (concat b c))) m)
So a2 is in the next state.

(concat (concat (star a1!) (any a2 (concat b c))) m)
) (concat (concat !(star a1) (any a2 (concat b c))) m)
) (concat (concat (star a1)! (any a2 (concat b c))) m)
) (concat (concat (star a1) !(any a2 (concat b c))) m)
) (concat (concat (star a1) (any a2 !(concat b c))) m)
) (concat (concat (star a1) (any a2 (concat !b c))) m)
So b is in the next state.

The next state consists of fm; a1; a2; bg. Since the endmarker m is in the state, the string a is
accepted by the DFA.

Next we scan the symbol b in the string abcd by moving the pointer past the b and continuing.
(concat (concat (star a1) (any a2 (concat b! c))) m)

) (concat (concat (star a1) (any a2 (concat b !c))) m)
So c is in the next state. The next state is fcg. Since the endmarker is not in this set, the string
ab is not accepted by the DFA.

Next we scan the symbol c in abcd by moving the pointer past the c and continuing.
(concat (concat (star a1) (any a2 (concat b c!))) m)

) (concat (concat (star a1) (any a2 (concat b c)!)) m)
) (concat (concat (star a1) (any a2 (concat b c))!) m)
) (concat (concat (star a1) (any a2 (concat b c)))! m)
) (concat (concat (star a1) (any a2 (concat b c))) !m)
So m is in the next state. The next state is fmg. Since m is in this state, the DFA accepts the
string abc.

Finally, the DFA scans the symbol d in the string abcd but since there are no occurences of d
in the previous state, the next state is empty. Hence, the string abcd is not accepted by the DFA.
(Furthermore, any extension of abcd will not be accepted by the DFA since once the state becomes
empty it remains empty forever.) The following table summarizes the process for the DFA for the
regular expression (concat (concat (star a1) (any a2 (concat b c))) m) with endmarker m when
acting upon the string abcd and its pre�xes.
String Scanned (so far) DFA state Comments

� fa1; a2; bg (initial state) � rejected.

a fa1; a2; b;mg a accepted.

ab fcg ab rejected.

abc fmg abc accepted.

abcd fg abcd rejected.

Theorem 9.3 (Well-Known Theorem). Every regular expression r has a deterministic �nite
automaton that accepts exactly the set of strings that match the regular expression r.

Proof:

32

The �rst step is to review the de�nition of matching for regular expressions. This can be de�ned
in terms of a string and a stack of (marked) regular expressions. The purpose of the marking is to
prevent expansion of the star operator without consuming at least one symbol thereby preventing
in�nite loops. The stack is indicated using stack and a mark is indicated by T . Unmarking
everything in the stack is denoted by U . The semantics is as follows where M0 maps (string,stack)
pairs into boolean values. It turns out that it is convenient to introduce a new primitive symbol
m0 as an endmarker.

1. M0(s; (stack)) = False

2. M0(�; (stack m0 r2 . . .rn)) = True

3. M0(�; (stack a r2 . . .rn)) = False if a is a primitive symbol

4. M0(as; (stack a r2 . . .rn)) = M0(s; U(stack r2 . . .rn)) if a is a primitive symbol

5. M0(as; (stack b r2 . . .rn)) = False if a; b are di�erent primitive symbols

6. M0(s; (stack (any r01 . . .r
0
m) r2 . . .rn))

= M0(s; (stack r01 r2 . . .rn))_ . . . _M0(s; (stack r0m r2 . . .rn))

7. M0(s; (stack (concat r01 . . .r
0
m) r2 . . .rn)) = M0(s; (stack r01 . . .r

0
m r2 . . .rn))

8. M0(s; (stack (star r1) r2 . . .rn))
= M0(s; (stack r1 T (star r1) r2 . . .rn))_M0(s; (stack r2 . . .rn))

9. M0(s; (stack T (star r1) r2 . . .rn)) = False

A string s matches a regular expression r i� M0(s; (stack (concat r m0))) = True.

At �rst glance, this de�nition might seem to require unbounded space because of the stack.
However, each stack can be encoded with a pointer into the regular expression (with markings as
needed). De�ne the function R to reconstruct the stack as follows (where ! represents the pointer)
and (push r1 (stack r2 . . .rn)) = (stack r1 r2 . . .rn) as follows:

1. R(. . .!r . . .) = (push r R(. . .r! . . .))

2. R(. . . (any r1 . . .ri�1 ri! ri+1 . . .rn) . . .) = R(. . . (any r1 . . .rn)! . . .)

3. R(. . . (concat r1 . . .rn�1 rn!) . . .) = R(. . . (concat r1 . . .rn�1 rn)! . . .)

4. R(. . . (concat r1 . . .ri�1 (ri!) ri+1 . . .rn) . . .) = R(. . . (concat r1 . . .ri�1 ri (!ri+1) ri+2 . . .rn) . . .)

5. R(. . . (star r1!) . . .) = R(. . .!(star r1) . . .)

6. R(. . .T (star r1!) . . .) = R(. . .!T (star r1) . . .)

7. R(r!) = (stack)

33

For the rest of the proof, the notation (. . .!r0 . . .) will be used to denote a regular expression with
the pointer just before r0 and the notation (. . .r0! . . .) will be used to denote a regular expression
with the pointer just after r0. A regular expression with a single pointer (and possibly with \T"
markers) will be referred to as a \nicked" regular expression.

De�ne a new meaning function M1 that maps a (string,nicked regular expression) into booleans
by the de�nition M1(s; r) = M0(s; R(r)) where r is the nicked regular expression. It is easy to
check that M1 satis�es the following properties:

1. M1(s; (r!)) = False

2. M1(�; (. . .!m0 . . .)) = True

3. M1(�; (. . .!a . . .)) = False if a is a primitive symbol

4. M1(as; (. . .!a . . .)) = M1(s; U(. . .a! . . .)) if a is a primitive symbol

5. M1(as; (. . .!b . . .)) = False if a; b are di�erent primitive symbols

6. a.) M1(s; (. . .!(any r1 . . .rm) . . .))
= M1(s; (. . . (any !r1 r2 . . .rm) . . .))_ . . . _M1(s; (. . . (any r1 . . .rm�1 !rm) . . .))

b.) M1(s; (. . . (any r1 . . .ri�1 ri! ri+1 . . .rm) . . .)) = M1(s; (. . . (any r1 . . .rm)! . . .))

7. a.) M1(s; (. . .!(concat) . . .)) = M1(s; (. . . (concat)! . . .))
b.) M1(s; (. . .!(concat r1 . . .rm) . . .)) = M1(s; (. . .(concat !r1 r2 . . .rm) . . .))
c.) M1(s; (. . . (concat r1 . . .ri�1 ri! ri+1 . . .rn) . . .)) =

M1(s; (. . . (concat r1 . . .ri�1 ri !ri+1 ri+2 . . .rn) . . .))
d.) M1(s; (. . . (concat r1 . . .rm�1 rm!) . . .)) = M1(s; (. . .(concat r1 . . .rm)! . . .))

8. a.) M1(s; (. . .!(star r1) . . .))
= M1(s; (. . .T (star !r1) . . .)) _M1(s; (. . .(star r1)! . . .))

b.) M1(s; (. . . (star r1!) . . .)) = M1(s; (. . .!(star r1) . . .))

9. a.) M1(s; (. . .!T (star r1) . . .)) = False
b.) M1(s; (. . .T (star r1!) . . .)) = False

The above properties of M1 could be viewed as a de�nition of matching. A string s matches a
regular expression r i� M1(s; !(concat r m0)) = True.

Since the real action happens when a primitive symbol is on the top of the stack, one can view
the other steps as rewriting (denoted with the) symbol) to get a primitive symbol on the top
of the stack. The inductive clauses 6-9 of M1 could be taken to de�ne a set of rewrite rules on
nicked regular expressions. Let) be the least re
exive, transitive relation such that the following
all hold:

6. a.) !(any r1 . . .rn)) (any r1 . . .ri�1 !ri ri+1 . . .rn)
b.) (any r1 . . .ri�1 ri! ri+1 . . .rn)) (any r1 . . .rn)!

34

7. a.) !(concat)) (concat)!
b.) !(concat r1 . . .rn)) (concat !r1 r2 . . .rn)
c.) (concat r1 . . .ri�1 ri! ri+1 . . .rn)) (concat r1 . . .ri�1 ri !ri+1 ri+2 . . .rn)
d.) (concat r1 . . .rn�1 rn!)) (concat r1 . . .rn�1 rn)!

8. a'.) !(star r1)) T (star !r1)
a".) !(star r1)) (star r1)!
b.) (star r1!))!(star r1)

9. !T (star r1) and T (star r1!) are stuck (i.e. no) rules apply)

Let)a be the rule that corresponds to clause 4 in the de�nition of M1; namely,)a transforms
!a into a! and erases all the T markers. De�ne M2 on (string,nicked regular expression) pairs to
produce a boolean as follows: M2(�; r0) = True i� r0) r1 for some r1 of the form (. . .!m0 . . .);
M2(as; r0) = True i� there exists r1; r2 such that r0) r1)a r2 and M(s; r2) = True. It is easy
to check that M2 = M1. Hence M2 represents a valid de�nition for matching a regular expression.

We will use M2 to build a DFA. Given a regular expression r, let O(r) be the set of occurences
of primitive symbols in r. For each o 2 O(r), let P (o) denote the primitive symbol of which
o is an occurrence. De�ne I(r) = fo 2 O(r) j !r) (. . .!o . . .)g and for each o 2 O(r), de�ne
No(r) = fo0 2 O(r)j(. . .o! . . .)) (. . .!o0 . . .)g. To build a DFA for the regular expression r, let
r0 = (concat r m0) where m0 is the endmarker. Every state of the DFA is a subset of O(r0). The
initial state is I(r0). An accepting state is a state that has at least one occurrence of m0. The
transition function � is as follows: �(a; S) = [fNo(r0)jo 2 S ^ P (o) = ag. It is clear that this DFA
behaves just as M2 does. Therefore, this DFA accepts a string i� the string matches the regular
expression r. 2

The next theorem shows that the regular expressions are at least as expressive as SDL for
expressing full sequence queries.

Theorem 9.4. For every SDL shape s, there exists a regular expression r such that a history
matches r i� it matches s.

Proof: (sketch)

First note that it is easy to dispense with the in construct since one of the arguments to in is
the length of the string. Hence there are only a �nite (but potentially huge) number of possible
strings that match the in construct. These can be all listed using the any construct. The in no
longer needs to be considered for the rest of the proof.

Before proving the result, it is helpful to reduce the number of constructs that must be dealt
with. Add the new shape nofollows. The nofollows shape is di�erent than the typical regular
expression in that it restricts future matching. In particular, (concat (nofollows P) Q) indicates
that, in order to match, not only must Q match but no pre�x can match P .

The atleast, atmost, and exact constructs can be eliminated in favor of the new constructs
as follows:
(atleast n P) = (concat P . . . P (star P) (nofollows P))) where the dots represent n repetitions
of P
(exact n P) = (concat P . . . P) (nofollows P)) where the dots represent n repetitions of P

35

(atmost n P) = (concat (any (concat) . . . (concat P . . . P)) (nofollows P)) where the dots
indicate all sequences of P 's of length at most n.

Using the notation in the proof of Theorem 9.3, the match set for nofollows is as follows:
M0(s; (stack (nofollows r1) r2 . . .rn)) = True i� M0(s; (stack r2 . . .rn)) = True and for all
pre�xes s0 of s, M0(s

0; (stack r1)) = False. Since we are depending on endmarkers, there has to be
a new distinct endmarker added for each nofollows construct so that (nofollows r1) is replaced
by (nofollows (concat r1 m0)) where m0 is a unique new endmarker.

Just as in the proof of Theorem 9.3, rewriting (using the) notation) is used to get an alternative
de�nition of matching upon which the DFA is constructed. The nofollows construct represents a
drag on the matching that may occur. Fix a regular expression r0 that has already been augmented
with endmarkers (a unique one for each nofollows clause as well as the endmarker for the entire
regular expression). Each state must keep track not only of the current DFA but also of the
subsidiary DFAs that have been set in motion by a nofollows clause. Every potential state S will
be a set of the form f(o1; S1); . . . ; (on; Sn)g where each oi is an occurrence of a primitive symbol
and Si is itself a state. (Note that since a state might be empty, there is indeed a base case in
the de�nition of potential state.) A potential state S is called homogeneous i� (a) if (o1; S1) 2 S,
then S1 is homogenous, (b) if (o1; S1) 2 S and (o2; S2) 2 S1, then o2 occurs within at least one
more nofollows constructs than o1 occurs in. and (c), if (o1; S1); (o2; S2) 2 S, then o1; o2 occur
within exactly the same set of nofollows constructs. Note that the empty set is homogeneous.
Also note that there are only a �nite number of homogenous potential states since the \depth" of
a homogeneous potential state can be no more than the depth of nesting of nofollows constructs.
A potential state S is valid i� o2 is not an endmarker whenever (o2; S2) 2 S1 for some (o1; S1) 2 S.
The states of the DFA are the valid, homogeneous potential states. As before, there will be
a rewriting process) that takes a (regular expression, homogeneous potential state) pair and
produces another. (The rewrite rules are given below.) The rules have the property that as
a pointer moves, it always stays within exactly the same set of nofollows constructs thereby
preserving homogeneity. (Note that the notion of homogeneity is extended to include pointers,
not just occurences of primitive symbols.) As before, we de�ne the functions I and No, but �rst
we need the function V that turns a homogeneous potential state into a state as follows: V (S) =
f(o1; V (S1)) j (o1; S1) 2 S ^ 8(o2; S2) 2 V (S1)(P (o2)is not an endmarker)g. Note that V works
from the inside out, transforming the innermost potential states �rst. I(r) = V (f(o;D) j (!r; ;))
(o;D)g). If o 2 O(r) is an occurrence of a primitive symbol, No(r;D) = f(o0; D0) j ((. . .o! . . .); D))
((. . .!o0 . . . ; D0))g where (. . .o! . . .) represents r with the pointer just after o and (. . .o! . . .) represents
some other nicked regular expression with the pointer just before o0. The initial state is I(r0). Any
state with an element of the form (m0; S0) where m0 is an endmarker is an accepting state. The
transition function is as follows: �(a; S) = V (fNo1(r0; �(a; S1)) j (o1; S1) 2 S ^ P (o1) = ag). The
reader can check that this DFA accepts a string i� the string matches the regular expression where
) is the least re
exive, transitive relation such that the following all hold:

1. (!(any r1 . . .rn); D)) ((any r1 . . .ri�1 !ri ri+1 . . .rn); D)

2. ((any r1 . . .ri�1 ri! ri+1 . . .rn); D)) ((any r1 . . .rn)!; D)

3. (!(concat); D)) ((concat)!; D)

4. (!(concat r1 . . .rn); D)) ((concat !r1 r2 . . .rn); D)

36

5. ((concat r1 . . .ri�1 (ri!) ri+1 . . .rn); D)) ((concat r1 . . .ri�1 ri (!ri+1) ri+2 . . .rn); D)

6. ((concat r1 . . .rn�1 rn!); D)) ((concat r1 . . .rn�1 rn)!; D)

7. ((star r1!); D)) (!(star r1); D)

8. (!(star r1); D)) (T (star !r1); D)

9. (!(star r1); D)) ((star r1)!; D)

10. (!T (star r1); D) is stuck (i.e. no) rules apply)

11. (!(nofollows r1); D)) ((nofollows r1)!; D [I(r1))

2

Remark 9.5. The reader might �nd it unsatisfying to see that the in construct was handled in
one fell swoop by a �niteness argument. This is indeed the easiest proof but sheds little light on
the in construct itself. In fact, the in construct could be handled by using a counter to keep track
of how many di�erent substrings have entered that state. A counter in the start state would be
incremented every time a symbol was scanned since the newly scanned symbol represents another
starting point for a subsequence. Of course, DFAs cannot handle counting since that involves a
potentially unbounded memory. However, DFAs can handle bounded counting where once the
counter hits a maximum value further incrementing has no e�ect. Since every precisely, nomore,
noless has an integer argument, it is su�cient if all counters are bounded by one plus the maximum
of all these integer arguments. The complexity of this construction (which must be folded in with
added complexity already captured in the proof of Theorem 9.4) underscores the sophistication of
blurry matching!

References.

[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance perspective. IEEE
Transactions on Knowledge and Data Engineering, 5(6):914{925, December 1993. Special Issue
on Learning and Discovery in Knowledge-Based Databases.

[2] D. J. Berndt and J. Cli�ord. Using dynamic time warping to �nd patterns in time series.
In KDD-94: AAAI Workshop on Knowledge Discovery in Databases, pages 359{370, Seattle,
Washington, July 1994.

[3] A. Califano and I. Rigoutsos. FLASH: A fast look-up algorithm for string homology. In
Proc. of the 1st Int'l Conference on Intelligent Systems for Molecular Biology, pages 353{359,
Bethesda, MD, July 1993.

[4] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for active
databases: Semantics, contexts, and detection. In Proc. of the VLDB Conference, pages 606{
617, Santiago, Chile, September 1994.

[5] R. D. Edwards and J. Magee. Technical Analysis of Stock Trends. John Magee, Spring�eld,
Massachusetts, 1966.

37

[6] S. Gatziu and K. Dittrich. Detecting composite events in active databases using petri nets.
In Proc. of the 4th Int'l Workshop on Research Issues in Data Engineering: Active Database
Systems, pages 2{9, February 1994.

[7] N. Gehani, H. Jagadish, and O. Shmueli. Composite event speci�cation in an active databases:
Model & implementation. In Proc. of the VLDB Conference, pages 327{338, Vancouver, British
Columbia, Canada, August 1992.

[8] J. E. Hopcroft and J. D. Ullman. Introduction to Automaton Theory, Languages, and Com-
putation. Addison-Wesley, Reading, Massachusetts, 1979.

[9] M. Roytberg. A search for common patterns in many sequences. Computer Applications in
the Biosciences, 8(1):57{64, 1992.

[10] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A model for sequence databases. In Proc.
of the IEEE Int'l Conference on Data Engineering, Taiwan, 1995.

[11] M. Vingron and P. Argos. A fast and sensitive multiple sequence alignment algorithm. Com-
puter Applications in the Biosciences, 5:115{122, 1989.

[12] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro, D. Shasha, and K. Zhang. Combinatorial
pattern discovery for scienti�c data: Some preliminary results. In Proc. of the ACM SIGMOD
Conference on Management of Data, Minneapolis, May 1994.

[13] S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classi�cation and Predic-
tion Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan
Kaufman, 1991.

[14] S. Wu and U. Manber. Fast text searching allowing errors. Communications of the ACM,
35(10):83{91, October 1992.

38

