
Querying Shapes of Histories

Rakesh Agrawal Giuseppe Psaila� Edward L. Wimmers Mohamed Za��t

IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

Abstract

We present a shape de�nition language, called SDL,

for retrieving objects based on shapes contained in

the histories associated with these objects. It is a

small, yet powerful, language that allows a rich variety

of queries about the shapes found in historical time

sequences. An interesting feature of SDL is its ability

to perform blurry matching. A \blurry" match is one

where the user cares about the overall shape but does

not care about speci�c details. Another important

feature of SDL is its e�cient implementability. The

SDL operators are designed to be greedy to reduce

non-determinism, which in turn substantially reduces

the amount of back-tracking in the implementation.

We give transformation rules for rewriting an SDL

expression into a more e�cient form as well as an index

structure for speeding up the execution of SDL queries.

1 Introduction

Historical time sequences constitute a large portion
of data stored in computers. Examples include
histories of stock prices, histories of product sales,
histories of inventory consumption, etc. Assume a
simple data model in which the database consists of
a set of objects. Associated with each object is a set
of sequences of real values. We call these sequences
histories and each history has a name. For example,
in a stock database, associated with each stock may

�Current Address: Politecnico di Milano, Italy.

Permission to copy without fee all or part of this ma-
terial is granted provided that the copies are not made or
distributed for direct commercial advantage, the VLDB copy-
right notice and the title of the publication and its date ap-
pear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 21st VLDB Conference

Z�urich, Switzerland 1995

be histories of opening price, closing price, the high
for the day, the low for the day, and the trading
volume.

The ability to select objects based on the occur-
rence of some shape in their histories is a require-
ment that arises naturally in many applications.
For example, we may want to retrieve stocks whose
closing price history contains a head and shoulder
pattern [4]. We should be able to specify shapes
roughly. For example, we may choose to call a trend
uptrend even if there were some down transitions as
long as they were limited to a speci�ed number.

To this end, we propose a shape de�nition
language, called SDL. It is a small, yet powerful,
language that allows a rich variety of queries about
the shapes found in histories. The most interesting
feature of SDL is its capability for blurry matching.
A \blurry" match is one where the user cares
about the overall shape but does not care about
speci�c details. For example, the user may be
interested in a shape that is �ve time periods long
and contains at least three ups but no more than
one down. SDL has been designed to make it
easy and natural to express such queries. Another
important feature of SDL is that it has been
designed to be e�ciently implementable. Most
of the SDL operators are greedy and therefore
there is very little non-determinism (in the sense
of multiple match possibilities) inherent in an SDL
shape, which in turn substantially reduces the
amount of back-tracking in the implementation. In
addition, SDL provides the potential for rewriting
a shape expression into a more e�cient form as
well as the potential for indexes for speeding up
the implementation.

SDL bene�ts from a rich heritage of languages
based on regular expressions, but this earlier work

1

Symbol Description lb ub iv fv
up slightly increasing transition .05 .19 anyvalue anyvalue

Up highly increasing transition .20 1.0 anyvalue anyvalue

down slightly decreasing transition -.19 -.05 anyvalue anyvalue

Down highly decreasing transition -1.0 -.19 anyvalue anyvalue

appears transition from a zero value to a non-zero value 0 1.0 zero nonzero

disappears transition from a non-zero value to a zero value -1.0 0 nonzero zero

stable the �nal value nearly equal to the initial value -.04 .04 anyvalue anyvalue

zero both the initial and �nal values are zero 0 0 zero zero

Table 1: An Illustrative Alphabet A

has a di�erent design focus that in
uences which
expressions are easy to write, understand, optimize,
and evaluate. For example, while the blurry
matching of SDL is reminiscent of approximate
matching for strings (e.g., [9]) or for patterns in time
series [2], SDL allows the user to impose arbitrary
conditions on the blurry match but requires that
the user specify those conditions completely. The
event speci�cation languages in active databases
[3] [5] [6] concentrate on detecting the endpoints
of events rather than concentrating on intervals as
SDL does. The SEQ work of [8] focused on building
a framework for describing constructs from various
existing sequence models.

Organization of the Paper The rest of the pa-
per is organized as follows. In Section 2, we intro-
duce SDL informally through examples; the formal
semantics is given in Appendix A. In Section 3, we
discuss the design rationale of SDL. We discuss its
expressive power, its capability for blurry matching,
its ease of use, and its e�cient implementability. In
Section 4, we give transformation rules for rewriting
an SDL expression into an equivalent but a more
e�cient form. In Section 5, we describe an index
structure and show how it can be used to speed up
the evaluation of SDL queries. We conclude in Sec-
tion 6 with a summary. For an expanded version of
this paper, see [1].

2 Shape De�nition Language

We will introduce our shape de�nition language,
SDL, informally through examples. The formal
semantics is given in Appendix A. Every object in
the database has associated with it several named
histories. Each history is a sequence of real values.
The behavior of a history can be described by

considering the values assumed by the history at

the beginning and the end of a unit time period;
that is, by considering transitions from an instant
to the following one. It is immediate then that
a history generates a transition sequence based
on an alphabet whose symbols describe classes of
transitions.

2.1 Alphabet

The syntax for specifying alphabet is :

(alphabet (symbol lb ub iv fv))

Here symbol is a symbol of the alphabet being
de�ned and the rest four descriptors provide the
de�nition for the symbol. The �rst two, lb and ub,
are the lower and upper bounds respectively of the
allowed variation from the initial value to the �nal
value of the transition. The latter two, iv and fv, can
be one of zero, nonzero and anyvalue, and specify
constraints on the initial and �nal value respectively
of the transition.
Table 1 gives an illustrative alphabet A. Consider

the time sequence H in Figure 1.
Given alphabet A, a transition sequence corre-

sponding to H will be:

(zero appears up up up down stable Down

down disappears)

Depending on the alphabet, there can be more than
one transition sequence corresponding to a time
sequence. For example, another transition sequence
corresponding to H is:

(zero stable up up up down stable Down down

stable)

This ambiguity does not cause inconsistency at
query time because the user speci�es the particular
shape to be matched. For example, if the user

2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

V
a

lu
e

Time

Figure 1: Time Sequence H = (0 0 :02 :17 :35 :50
:45 :43 :15 :03 0)

had asked for stable, we will resolve the ambiguity
between stable and zero in the favor of stable.
We will use the alphabet A and the time sequence

H throughout the paper to give concrete examples.
We will use the notationH[i,j] to represent the sub-
sequence of H consisting of elements from position
i to the position j inclusive, 0 being the �rst po-
sition. H[i,i] will represent the null sequence since
an elementary shape (see Section 2.2.1) requires at
least one transition.

2.2 Shape Descriptors

Using the alphabet of the language, we can de�ne
classes of shapes that can be matched in histories or
parts of them. The application of a shape descriptor
P to a time sequence S produces a set of all the
subsequences in S that match the shape P . If no
subsequence in S matches P , then the result is an
empty set. Depending on the descriptor, a null
sequence can match a shape. For the convenience
of the user, however, the null sequences are not
reported to the user.
The syntax for de�ning a shape is:

(shape name(parameters) descriptor)

A shape de�nition is identi�ed by means of a
name for the shape, which is followed by a possibly
empty list of parameters (see Section 2.4) and then
a descriptor for the shape. For example, here is a
de�nition of a spike:

(shape spike() (concat Up up down Down))

This de�nition has no parameters. The meaning of
the descriptor will become clear momentarily.

2.2.1 Elementary Shapes

The simplest shape descriptor is an elementary
shape. All the symbols of the alphabet correspond
to elementary shapes. When an elementary shape
is applied to a time sequence S, the resulting set
contains all the subsequences of S that contain only
the speci�ed elementary shape.
For example, the shape descriptor (stable)

applied to the time sequence H given in Figure 1
yields the set fH[0,1], H[1,2], H[9,10]g, where
H[0,1] = (0 0), H[1,2] = (0 .02) and H[9,10] = (.03
0). The descriptor (zero) yields the set fH[0,1]g.
Note that the subsequence H[0,1] is contained
in the result set of both the descriptors because
the transition corresponding to this subsequence
satis�es the de�nitions of both stable and zero.
Finally, the shape descriptor (Up) results in an
empty set because H contains no Up transition.

2.3 Derived Shapes

Starting with the elementary shapes, complex shapes
can be derived by recursively combining elementary
and previously de�ned shapes. We describe next
the set of operators available for this purpose.

Multiple Choice Operator any. The any oper-
ator allows a shape to have multiple values. The
syntax is

(any P1 P2 . . . Pn)

where Pi is a shape descriptor. When a shape
obtained by means of the any operator is applied
to a time sequence S, the resulting set contains all
the subsequences of S that match at least one of
the Pi shapes.
For example, the shape (any zero appears)

applied to the time sequence H yields the set
fH[0,1], H[1,2]g, where H[0,1] = (0 0) which is a
zero transition and H[1,2] = (0 .02) which is an
appears transition.

Concatenation Operator concat. Shapes can
be concatenated by using the operator concat:

(concat P1 P2 . . . Pn)

When a shape obtained by using the concat

operator is applied to a time sequence S, �rst the

3

shape P1 is matched. If a matching subsequence
s is found, P2 is matched in the subsequence of S
immediately following the last element of s and the
match is accepted if it is strictly contiguous to s,
etc. For example, the shape descriptor

(concat up up up (any stable down)

(any stable down) (any down Down))

speci�es that we are interested in detecting if an
upward trend (indicated by three consecutive ups)
has reversed (indicated by two stables or downs,
followed by a down or Down). When applied to the
time sequence H, it yields the set fH[2,8]g, where
H[2,8] = (.02 .17 .35 .50 .45 .43 .15). The transition
sequence corresponding to this subsequence is (up
up up down stable Down).

MultipleOccurrence Operators exact, atleast,

atmost. Shapes composed of multiple contiguous
occurrences of the same shape can be de�ned using
three other operators, exact, atleast and atmost:

(exact n P)
(atleast n P)
(atmost n P)

When a shape obtained using exact/atleast/
atmost is applied to a time sequence S, it matches
all subsequences of S that contain exactly/at
least/at most n contiguous occurrences of the shape
P . In addition, the resulting subsequences are
such they are neither preceded nor followed by a
subsequence that matches P . For example,

(exact 2 up) yields ;.
(atleast 2 up) yields fH[2,5]g, where

H[2,5]= (.02 .17 .35 .50).
(atmost 2 up) yields f[k; k] j

0 � k � 1_6 � k � 10g.

The �rst shape results in an empty set because
there is no subsequence in H which is exactly
two transitions long, consisting entirely of up

transitions, and neither preceded nor followed by
an up transition. The second shape matched
the subsequence consisting of three contiguous up

transitions.
The result for the third shape merits further

discussion. The shape (atmost 2 up) matches
the null sequence at those positions of H that do
not participate in an up transition. The other
null sequences are not in the answer since they

participate in a sequence of 3 consecutive ups. Since
the �nal answer in this case is a set of null sequences
and we do not report null sequences, the user will
see ; as the answer. Allowing a null sequence
to match atmost n P has the virtue that we can
naturally specify

(concat (atleast 2 up) (atmost 1 Down))

and match it to H[2,5] corresponding to the transi-
tion sequence up up up.

Bounded Occurrences Operator in. The in

operator is the most interesting SDL operator. It
permits blurry matching by allowing users to state
an overall shape without giving all the speci�c
details. The syntax is

(in length shape-occurrences)

Here length speci�es the length of the shape in
number of transitions. The shape-occurrences has
two forms.
In the �rst form, the shape-occurrences can be

one of

(precisely n P)
(noless n Q)
(nomore n R)

or a composition of them using the logical operators
or and and.
When a shape de�ned using this form is applied

to a time sequence S, the resulting set contains all
subsequences of S that are length long in terms of
number of time periods (transitions) and contain
precisely (no less than/ no more than) n occurrences
of the shape P (Q/R). The n occurrences of
P (Q/R) need not be contiguous in the matched
subsequence; there may be arbitrary gap between
any two of them. They may also overlap. For
example, the shape descriptor

(in 5 (and (noless 2 (any up Up))

(nomore 1 (any down Down))))

speci�es that we are interested in subsequences �ve
intervals long that have at least two ups (either
up or Up) and at most one down (either down or
Down). When applied to the time sequence H, it
yields the set fH[2,7]g, where H[2,7] = (.02 .17 .35
.50 .45 .43). The transition sequence corresponding
to this subsequence is (up up up down stable).
Note that the subsequence H[3,8] = (.17 .35 .50

4

.45 .43 .15) � (up up down stable Down) is not
in the answer because it has two downs. As another
example, consider the shape

(in 7 (precisely 0 Down))

We are looking for sequences seven time periods
long that do not have any Down transitions. H[0,7]
is the only subsequence of H that satis�es this
constraint.
The operators precisely, noless, nomore should

not be confused with the multiple occurrence op-
erators exact, atleast, and atmost. The lat-
ter are \�rst class" operators that can be used
to introduce shapes to be matched, whereas the
former can only appear within the in operator
and constrain the sub-shapes. More importantly,
precisely, noless, and nomore allow overlaps and
gaps, whereas exact, atleast, and atmost do not.
The second form for the shape-occurrences is:

(inorder P1 P2 . . .Pn)

where Pi is a shape descriptor. When a shape
obtained using this form is applied to a time
sequence, each of the resulting subsequences is
length long and contains the shapes P1 through Pn
in that order. Pi and Pi+1 may not overlap, but
they may have arbitrary gap. For example, the
shape descriptor

(in 7 (inorder (atleast 2 (any up Up))

(in 4 (noless 3 (any down Down)))))

speci�es that we are interested in subsequences
seven time periods long. The matching subsequence
must contain a subsequence that has atleast two ups
and that must be followed by another subsequence
four intervals long that contains at least three
downs. When applied to the time sequence H, it
yields the set fH[2,9]g, where H[2,9] = (.02 .17
.35 .50 .45 .43 .15 .03) � (up up up down stable

Down down).

2.4 Parameterized Shapes

Shape de�nitions can be parameterized by specify-
ing the names of the parameters in the parameter
list following the shape name and using them in the
de�nition of the shape in place of concrete values.
Here is an example of a parameterized spike:

(shape spike(upcnt dncnt)

(concat (exact upcnt (any up Up))

(exact dncnt (any down Down))))

When a parameterized shape P is used in the
de�nition of another shape Q, the parameters of P
must be bound. They can be bound to concrete
values or to the parameters of Q. Here is an
example:

(shape doublepeak(width ht1 ht2)

(in width (inorder spike(ht1 ht1)

spike(ht2 ht2))))

3 Design of SDL

SDL provides the following key advantages:

� a natural and powerful language for expressing
shape queries

� capability for blurry matching

� reduction of output clutter

� an e�cient implementation

3.1 Expressive Power of SDL

Using SDL, one can express a wide variety of
queries about the shapes found in a history. Given
a sequence and a shape, one type of query (called
continuous matching in [8]) �nds all the subse-
quences that match the shape; the other type of
query (referred to as \regular matching" in this pa-
per) produces a boolean indicating whether the en-
tire sequence matches the shape.
Since SDL includes the operators concat, any,

and atleast, SDL is equivalent in expressive power
to regular expressions for regular matching. This
equivalence is proven in [1]. Because SDL is de-
signed to provide ease of expression together with
an e�cient implementation, it has several features
to enhance its e�ectiveness. The atleast opera-
tor, which is a variant of the � operator of regu-
lar expressions, provides both e�ciency gains and
expressiveness enhancements for continuous match-
ing. The � operator, once it has found the re-
quired number of matches, is allowed (nondeter-
ministically) either to exit or to continue matching;
whereas atleast is a greedy operator that does not
exit until it has found as many matches as it can.
In the regular matching case, the greedy nature of
atleast does not cause a loss of expressive power
since one can always write the shape so that subse-
quent shapes are not a�ected by the greedy nature
of atleast. Details of this construction are given
in [1].

5

In the case of continuous matching, the greedy se-
mantics of atleast allow SDL to take advantage of
contextual information to eliminate useless clutter.
For example, given the shape (atleast 5 up), SDL
will �nd all the maximal subsequences that have at
least �ve consecutive ups. In other words, SDL does
not report the non-maximal subsequences thereby
eliminating useless clutter. Regular expressions
would not be able to eliminate the clutter since they
are unable to \look-ahead" to provide contextual
information. If there happen to be seven consecu-
tive ups in the history, SDL will report this single
subsequence of length 7 whereas the regular expres-
sion would report six di�erent (largely overlapping)
subsequences; there would be three subsequences of
length 5, two subsequences of length 6, as well as
the entire subsequence of length 7. If, in the future,
�nding all such subsequences becomes important, a
non-greedy version of atleast could be added eas-
ily to SDL.

3.2 Ease of Expression in SDL

SDL is designed to make it easy and natural to ex-
press shape queries. For example, the atleast op-
erator provides a compact representation of repeti-
tions that seems natural even to someone not famil-
iar with regular expression notation. SDL provides
a (non-recursive) macro facility (with parameters)
that enhances readability by allowing commonly oc-
curring shapes to be abstracted.
One of the most exciting features of SDL is the

inclusion of the in operator that permits \blurry"
matching in which the user cares about the overall
shape but does not care about speci�c details. For
example, to indicate a uptrend with a subsequence
speci�ed by the in operator, the user might specify
(nomore 2 down) thereby limiting the number of
downs that can occur in the subsequence. While
the in operator can be simulated using regular
expressions, it is not easy to do so. The details
of the construction can be found in [1] and involve
keeping track of how many times diverse �nite
automatons have entered accepting states. The in

operator presents a much more natural method for
expressing the desired shape.
It is instructive to give an example. Assume that

a1; . . . ; an are \disjoint" elementary shapes (where
two elementary shapes are disjoint if they never
match the same transition sequence). Consider
the problem of �nding a \permutation" expression
that matches exactly those sequences of length n

that have precisely one occurrence of each ai. The
straightforward approach of listing all such possible
strings grows factorially. It is well-known that the
permutation expression can be compacted a bit to
exponential size but no further compaction is possi-
ble in regular expression notation. (See [1] for more
details and for proofs.) Since at least exponential
size is required, expressing permutations in regular
expression notation is tedious, error-prone, and not
particularly readable.
Parameterized shapes (macros) can dramatically

reduce the size of a permutation expression. One
can de�ne (inductively) the parameterized shapes
Pi to describe all permutations of i elements as
follows:

(shape P1(x1)(x1))
(shape P2(x1; x2) (any (concat x1 P1(x2))

(concat x2 P1(x1))))
(shape P3(x1; x2; x3) (any (concat x1 P2(x2; x3))

(concat x2 P2(x1; x3))
(concat x3 P2(x1; x2))

(shape Pi(x1; . . . ; xi)
(any (concat x1 Pi�1(x2; . . . ; xi))
. . . (concat xi Pi�1(x1; . . . ; xi�1))))

Since each Pi has size O(i
2), a permutation expres-

sion for n elements has size O(n3).
Blurring matching provides an even more e�ec-

tive permutation expression. For example, (in n
(and (precisely 1 a1) . . . (precisely 1 an)) does
the trick in only linear size. It is instructive to ex-
amine the features of blurry matching that permit
such a compact permutation expression. Blurry
matching permits the use of conjunctive as well
as disjunctive expressions. It is well known that
adding \and" to regular expressions does not in-
crease the expressive power of regular expressions
but does permit more compact expressions (see
Chapter 3 exercises in [7]). A permutation expres-
sion is such an example. The regular expression
(a1j . . . jan) can be used to describe all the charac-
ters. By concatenating n copies, it is possible to
express in O(n2) size all sequences of length exactly
n. It is also easy to see that the regular expression
(a1j . . . jai�1jai+1j . . . jan)� ai (a1j . . . jai�1jai+1j . . . j
an)� expresses all sequences that have exactly one
ai. By conjuncting these expressions together, we
obtain a regular expression with conjunctions that
expresses permutations and has size O(n2). As al-
ready noted, a (pure) regular expression that ex-
presses permutations must have exponential size.

6

The compactness of permutation expressions in
blurry shape notation is primarily due to the fact
that blurry shapes permit conjunctions. Blurry
shapes also enhance readability by allowing over-
lap directly whereas regular expressions (even with
conjunctions) can handle overlap only indirectly by
coding up the overlap in a di�erent regular ex-
pression. Even though the permutation example is
somewhat contrived to permit the easy analysis of
the complexity and expressive of SDL versus regu-
lar expressions, it is representative of a large class
of blurry queries that search for shapes which may
occur in any order.

3.3 E�cient Implementability for SDL

Since the semantics of SDL speci�es that operators
such as atleast be greedy, any is the only oper-
ator that introduces any \non-determinism". (In
this context, non-determinism means that there is
some starting point that has at least two di�erent
subsequences that match starting from that partic-
ular starting point.) This implies that the amount
of back-tracking an SDL implementation needs to
do is substantially reduced. For example, in the
shape (concat (atleast 4 P)(atleast 3 Q)) un-
der the normal regular expression semantics, after
4 P 's were found, the evaluator (i.e. automaton)
would have to keep searching for P as well as begin
searching for Q. In the SDL semantics, the search
for Q would not begin until all the P 's had been
found.
In addition, SDL provides the potential for

rewriting a shape expression into a more e�cient
form (Section 4) as well as the potential for indexes
(Section 5).

4 Shape Rewriting

We now present a set of transformation rules to
rewrite a shape expression into an equivalent but
a more e�cient expression. SDL shape operators
can be classi�ed into the following groups:

� concat, exact, atleast, atmost, and inorder:
Shape arguments must appear in the speci�ed
order without overlap.

� precisely, noless, and nomore: Shape argu-
ments must appear in the speci�ed order but
can overlap.

� and, or and any: Shape arguments may appear
in any order.

An operator can be rewritten using only operators
belonging to the same group.

4.1 Idempotence, Commutativity, and

Associativity

An operator has the idempotence property if the du-
plicates of a shape can be removed. It has the com-
mutativity property if shapes can be permuted. The
associativity property is useful for unnesting similar
operators, after which redundant shapes can be re-
moved using idempotence and commutativity. The
any, or, and and operators are idempotent, commu-
tative, and associative. The concat and inorder

operators are associative (but not idempotent and
commutative).
Here is an example of the application of these

properties:

(any P1 (any P2 P1))
, (any P1 P2 P1) { associativity
, (any P1 P1 P2) { commutativity
, (any P1 P2) { idempotence

4.2 Distributivity

The concat and and operators distribute over any
and or operators:

(concat P1 (any P2 P3))
, (any (concat P1 P2) (concat P1 P3))

(and P1 (or P2 P3))
, (or (and P1 P2) (and P1 P3))

Deciding which form is less costly to match is
similar to the problem of distributing the join over
the union in relational query optimization, since
concat and and result in joins and any and or result
in a union of resulting sets (see Section 5).

4.3 Folding identical shapes in concat

Identical shapes inside the concat operator are
folded using the exact operator. For example:

(concat P1 P2 P2 . . . P2 P3)
, (concat P1 (exact n P2) P3)

where n is the number of occurrences of P2 in
the original shape de�nition, and P1 and P3 do
not have a common su�x/pre�x with P2. This
transformation allows the index structure presented
in Section 5 to be used to evaluate the subshape
(exact n P2).

7

4.4 Multiple Occurrences Operators

The shape expressions involving a multiple Occur-
rences Operator (MOO) can often be reduced to
simpler expressions. The transformation rules fall
into three categories, depending on how the MOO
has been used: composed with another MOO, inside
concat, or inside any.

Composition. When a MOO, M1, is composed
with another MOO, M2, the result depends on what
M1 is:

(fexactjatleastg n (M2 m P))
, (M2 m P) if n = 1, ; if n > 1.

(atmost n (M2 m P))
, (any (exact 0 (M2 m P)) (M2 m P))

if n �1.

In the rule for the atmost operator, the shape
arguments to any in the right-hand side of the rule
correspond to 0 and 1 occurrences of the atmost

argument in the match.

Inside concat. When the concat operator is
applied to two MOOs, M1 and M2, on the same
shape, the result is ;. The only exception is when M2
matches the null sequence, in which case the result
is the same as yielded by M1. M2 can match the null
sequence either because it is atmost or because the
speci�ed number of occurrences is 0.

(concat (M1 n P) (M2 m P)) , (M1 n P) if
(M2=atmost or m=0), and ; otherwise.

Inside any. The operators atmost and atleast

can match a range of number of occurrences of
the speci�ed shape, whereas exact matches only
the speci�ed number of occurrence. Therefore,
their behavior di�ers inside any. Two atmost

(or atleast) over the same shape are equivalent
to one atmost (or atleast) with the number of
occurrences equal to the maximum (or minimum)
of the original ones.

(any (atleast n P) (atleast m P))
, (atleast min(n;m) P)

(any (atmost n P) (atmost m P))
, (atmost max(n;m) P)

If two exact over the same shape specify the same
number of occurrences, they can be reduced to
one exact; otherwise, the shape expression remains
unchanged.

When di�erent MOOs are used inside any, we
have the following rules (the order in which di�erent
MOOs are written inside any is not important
because any is commutative):

(any (exact n P) (atleast m P))
, (atleast m P) if m � n;

(atleast n P) if n = m � 1
(any (exact n P) (atmost m P))

, (atmost m P) if m � n;
(atmost n P) if m = n� 1

(any (atmost n P) (atleast m P))
, (atleast 0 P) if m�n+ 1

The above rules are the consequence of the
following rewritings of atleast and atmost:

(atleast nP) , (any (exact nP) (exact (n+1)P)
. . . (exact (p�1)P) (exact pP))

(atmost nP) , (any (exact 0P) (exact 1P) . . .
(exact (n� 1)P) (exact nP))

where p is the length of the interval over which the
matching is being performed.

4.5 The \in" operator

When composed with each other, the operators
precisely, noless and nomore have the same
properties as the MOOs. When used inside and

or or operators, they have the same properties as
MOOs when used inside concat or any operators,
respectively.
When the length speci�ed for the in operator is

less than the guaranteed minimum length of the
shape or the interval length where the match is
to be performed, then the result is empty. The
guaranteed minimum length can often be computed
when the shape expression involves noless or
precisely.
It might be tempting, but inorder cannot be

rewritten using the other in operators because
it is the only one in the in family that allows
gaps but not overlap. For example, the following
transformations are not valid:

(or (inorder P1 P2) (inorder P2 P1))
6, (and P1 P2)

(inorder P . . . P)
6, (precisely n P)

5 Indexing

A straightforward method to evaluate a shape query
will be to scan the entire database and match the

8

speci�ed shape against each sequence. We propose
a storage structure and show how it is used for
speeding up the implementation of SDL.

5.1 The Storage Structure

The proposed hierarchical storage structure, which
also acts as an index structure, consisting of four
layers. The top layer is an array indexed by a
symbol name from the alphabet. Its size is ns where
ns is the number of symbols in the alphabet. Its
elements point to one instance of the second layer.
An instance of the second layer is an array indexed
by the start period of the �rst occurrence of the
symbol in the sequence, whose elements point to
one instance of the third layer. The size of an
array of this layer is np where np is the maximum
number of time periods in some time sequence. One
instance of the third layer is an array indexed by the
maximum number of occurrences of the associated
symbol. Each element of this array points to a
sorted list of object ids. Consider an array at this
layer, being pointed to from the kth element of a
second-layer array. This array will have np � k
elements, starting from the kth position, because
a symbol can occur at most np�k times. Thus, the
number of elements in a third-layer array depends
on its parent in the second-layer. We use NULL,
as a special value, to mark elements corresponding
to empty combinations, e.g., when a given symbol
does not start at a speci�c position in any of the
sequences in the database. Having created this
structure, we no longer need the original data.
Figure 2 illustrates this structure. The speci�c

entries in this structure are for the sequence H given
in Figure 1.

The size of the �rst three layers of the structure
is independent of the number of sequences in the
database, whereas the fourth layer depends on the
number of sequences. In the worst case, the �rst
three layers will have ns(1 + np+ np� (np+ 1)=2)
entries, which can be approximated to ns � np2=2.
This case arises when all the elements of all the
arrays are non-NULL. In the worst case, there
can be a total of np entries in the fourth layer
for a sequence whose transition sequence does not
contain any identical symbol in two contiguous
positions. In the best case, there will be one
entry. If sequences have on average k identical
contiguous symbols, the total number of entries in
the index will roughly equal np � (ns � np=2 +
nseq=k). The original data sequences can be stored

as sequences of tuples (s, k0), where k0 is the number
of contiguous occurrences of the symbol s, requiring
2�np�nseq=k entries. We generally expect np to be
much smaller than nseq. Thus, if we were to store
sequences using the index storage structure, we can
save storage as long as k < (2 � nseq)=(ns � np).
For ns = 10; np = 50; nseq = 1000, k up to 10 can
save storage. In addition, the index can speed up
query processing.

5.2 The Mapping Problem

There may be more than one transition sequence
corresponding to a time sequence. For example,
the time sequence (0 0 0) can be mapped either
to (zero zero) or to (zero stable). One way to
deal with this problem is to store both mappings in
the index. However, this may lead to an exponential
explosion in the number of mappings. Instead, we
store only one form in the index as explained below.
Assume the existence of a set P of primitive el-

ementary shapes that are disjoint (i.e. every tran-
sition is in at most one of the primitive shapes).
Thus, there is no ambiguitywith regard to the mem-
bers of the set P. Further assume that every ele-
mentary shape is the \union" of some subset of P
(i.e. every transition in the given elementary shape
is in exactly one of the primitive elementary shape
in the subset of P corresponding to the given el-
ementary shape). In this case, the transformation
rule E , (any P1 . . . Pn) eliminates the elemen-
tary shape E in favor of the corresponding primitive
elementary shapes P1 . . . Pn for which there is no
ambiguity.
Since there might not already be a set of primitive

elementary shapes, it might be necessary to add
new primitive elementary shapes. In general, this
requires an exponential number of new primitive
elementary shapes since there would need to be a
new primitive elementary shape for every possible
non-empty subset of the original elementary shapes.
Fortunately, there is a natural su�cient condition
that requires only a linear blowup in the number of
new primitive elementary shapes. If every primitive
shape can be associated with an interval of real
numbers, then there is only linear blowup. To
see this, imagine n elementary shapes. These give
rise to 2n endpoints. These endpoints de�ne at
most 2n+1 disjoint consecutive intervals. (There
may be fewer than 2n+ 1 intervals since some
of the endpoints might coincide.) Add a new
primitive symbol for each such interval, giving rise

9

...

transition (or shape)

start
period

 appearszero up stable down Down disappears

NULL

Up

number of
consecutive
occurences

0

1 np np-1

...
1

......
2

...

1 np-6 np-5 np-8 np-71 1

H H H H H HH H

6

...

1

5 8

...
9

1 1

np-1

np-9

7

NULL NULL NULL

NULL

3

...
np-2

Figure 2: An index structure for SDL queries.

to 2n+ 1 new primitive symbols1. Each of the
original elementary shapes can clearly be expressed
as the \union" of the corresponding new primitive
elementary shapes. Intuitively, the fact that each
of the original elementary shapes has an associated
interval implies that most of the \intersections"
between the original elementary shapes is empty
and thus require no new primitive shapes, thereby
controlling the blowup.

5.3 Shape Matching Using the Index

Notation In the following, P and D denote
an elementary and a derived shape, respectively,
eval(D; [s; e]) denotes the evaluation of shape D
within the interval [s; e], and p denotes the length
of the interval, i.e., p = e � s. The result of
eval is a set of tuples [oid; start; length], where
oid is the object id, start is the start period, and
length the length of the matched subsequence.
The notation shape[P]:start[x]:occur[y] means \get
object identi�ers that have y occurrences of the
shape P starting from x", and represents index
traversal. The tuples resulting from matching the
null sequence have start = s and length = 0.

5.3.1 Operations on Elementary Shapes

We �rst consider the evaluation of elementary
shapes and those shapes derived by applying mul-
tiples occurrences operators on elementary shapes.
� Elementary shape

1Extra primitive symbols may be needed to handle

constraints on initial and �nal values.

eval(P; [s; e]) = f[oid : o; start : i; length : 1] j 9x; y
(o 2 shape[P]:start[x]:occur[y])^
(max(s; x) � i < min(x+ y; e))g

� exact

eval(exact n P; [s; e]) =
f[oid :o; start :max(s; x); length :n] j 9 x; y
(o 2 shape[P]:start[x]:occur[y])^ (x � e � n)^
(s+n �x+y) ^ (min(e; y+x)�max(s; x)= n)g

When n = 0, we cannot use directly the index to
get subsequences that match the null sequence. In-
stead, they are computed by the following expres-
sion:

eval(exact 0 P; [s; e])= f[oid : o; start : s; length : 0] j
[o; s] 62 eval(atleast 1 P; [s; e])[oid; start]g

� atmost

eval(atmost n P; [s; e]) = f[oid : o; start : max(s; x);
length : min(e; x + y) �max(s; x)] j 9 x; y
(o 2 shape[P]:start[x]:occur[y])^ (x < n)^
(s<x+y) ^ (min(e; x+y)�max(s; x)�n)gS

eval(exact 0 P; [s; e])

� atleast

eval(atleast nP; [s; e]) = f[oid : o; start :max(s; x);
length : min(e; x + y) �max(s; x)] j 9 x; y
(o 2 shape[P]:start[x]:occur[y])^ (x � e�n)^
(s+n�x+y) ^ (min(e; x+y)�max(s; x)�n)g

When n = 0, eval(exact 0 P; [s; e]) must be
\unioned" to the above expression.

1

� precisely, nomore, noless

The evaluation of (precisely/nomore/noless n P)
within the interval [s; e] is similar to (exact/atmost
/atleast n P) except that n must be equal/greater
/smaller than the sum of all P occurrences in [s; e].

5.3.2 Operations on Derived Shapes

The evaluation of more complex forms of derived
shapes is performed using the index structure
inductively.

� concat
The result of matching one shape constrains the
interval in which the next shape should be searched.
The following expression implements it for n=2; for
n>2, the evaluation is performed inductively:

eval(concat D1 D2; [s; e]) =
1(PR1;PJ1) (eval(D1 ; [s; e]);

S
t2I1

eval(D2; [t; e]))

Here I1 denotes the interval where the match-
ing of D2 starts. It results from the evaluation
of D1, and is given by I1 = [min(S1:start +
S1:length);max(S1:start+ S1:length)]. D1 is eval-
uated �rst, then I1, then D2, followed by a join
operation between resulting sets, S1 and S2, us-
ing the predicate PR1 = (S1:oid = S2:oid) ^
(S2:start = S1:start + S1:length) and projection
PJ1 = [oid : S1:oid; start : S1:start; length :
S1:length + S2:length]. The inductive evaluation
for the concatenation of n shapes stops either when
the result of a join is empty or after all joins have
been performed. In the former case, the evalua-
tion returns an empty set. Since Si elements are
sorted on oid, the join operations are implemented
as merge-join.

� Multiple Occurrences Operators

We use the same evaluation schema as for the
concat, replacing Di by D. The exact and atmost

operators have the same stopping condition as
concat. The exact operator returns the result
of step n if the result of step n+1 is empty, and
the empty result otherwise. The atmost operator
returns the result of step i if i�n and the result
of step i+1 is empty. For atleast the evaluation
stops when a join returns an empty set. It returns
the result of step i if i�n and the step i+1 returns
empty result.

� any

eval((any D1 . . . Dn); [s; e])=
[

1�i�n

(eval(Di; [s; e]))

� in
The length parameter of in de�nes a family of
intervals inside interval [s; e] where the match
should be performed. Thus, in is implemented by
the following expression:

eval((in n D); [s; e]) =
[

s�i�e�n

(eval(D; [i; i + n]))

The precisely, nomore, and noless operators
have the same evaluation schema as exact, atmost,
and atleast, respectively, but a di�erent de�nition
for the interval, predicate, and projection, because
they allow gaps and overlap between their shape
arguments. Their de�nitions for the interval,
predicate and projection require an o�set of at least
one time period between two consecutive shapes.
On the other hand, inorder does not accept
overlap, and its evaluation schema is the same as
for concat with the exception that its de�nition of
the interval, predicate, and projection requires that
two consecutive shapes, D1 and D2, are separated
by at least the length of the subsequence matched
by D1.
Since we allow gaps and overlap between shapes

inside and, it is implemented as a join between
the set of subsequences that match D1 and D2.
The shape order in the sequence does not matter.
The or operator over two shapes, D1 and D2, is
implemented as the union of the set of subsequences
that match D1 and the set of sequences that match
D2.

6 Summary

We presented SDL, a shape de�nition language for
retrieving objects based on shapes contained in the
histories associated with the objects. SDL is de-
signed to be a small, yet powerful, language for ex-
pressing naturally and intuitively a rich variety of
queries about the shapes found in histories. SDL
is equivalent in expressive power to the regular ex-
pressions when �nding if a given sequence matches a
particular shape. In the case of continuous match-
ing [8], where one �nds all the subsequences of a
given sequence that match a particular shape, SDL
provides context information that regular expres-
sions are unable to. Thus, SDL can discard the
non-maximal subsequences thereby eliminating use-
less clutter, whereas the regular expressions cannot
provide this service since they are unable to \look-
ahead" to provide context information.

1

A novel feature of SDL is its ability to perform
\blurry" matching where the user gives the overall
shape but not all the speci�c details. SDL
is e�ciently implementable | its operators are
designed to limit non-determinism, which in turn
reduces back-tracking. An SDL query expression
can be rewritten into a more e�cient form using
transformation rules and its execution can be
speeded using our index structure.

Acknowledgment We thank Stefano Ceri and
John Shafer for useful discussions.

7 Appendix A: Formal Semantics for
SDL

Notation Let H be a sequence of real values
describing a history. Formally, a sequence is a
function from an interval into the real numbers
where an interval is a �nite set of consecutive non-
negative integers. An interval is frequently denoted
by [i; j]. By length(H), we indicate the number
of elements in the domain of the function that
represents the sequence H. Every element in H
is identi�ed by its position in the sequence. The
�rst element for the whole history is in position 0.
We refer to the symbol in position i as H[i], with
0 � i < length(H).
Let S � H be a subsequence of H de�ned as

follows. Each element in S is identi�ed by its
position in the original sequence H and elements
in S are in the same order they are in H. The �rst
element of S is referred to as first(S), while the
last as last(S).
The subsequence of H from position i to position

j inclusive is represented as H[i; j], where 0 � i �
j < length(H). Similarly, S[i; j], where first(S) �
i � j � last(S), indicates a subsequence of S. The
length of S[i; j] is de�ned as length(S[i; j]) = j�i+
1. Notice that S[i; j][k; l] = S[max(i; k);min(j; l)].
There exists an alphabet A of symbols and a

mapping that can map the values of any two
consecutive elements of H into the symbols of A.
Each symbol corresponds to an elementary shape.
An elementary shape induces a class containing
all the subsequences of H of length 2 that satisfy
the de�nition of the corresponding alphabet. We
use the notation s 2 P to indicate a sequence s
belonging to the class induced by P 's de�nition,
where P is an elementary shape.
The ' operator is an application from a pair (S,

P), where S is a sequence and P a shape, to a
possibly empty set of intervals. This resulting set of
intervals contains all subsequences of S that match
the shape P . Notice that the de�nition implies that
if [k; l] 2 H[i; j] ' P , then i � k � l � j. The
interval [k; k] denotes any null sequence since any
elementary shape matches only intervals that have
a single transition (i.e. are of the form [k; k+ 1]).

Elementary shapes. Let H be a sequence and
P one of the symbols in A. Then
[k; l] 2 H[i; j] ' P i� H[k; l] 2 P and i � k � l =
k + 1 � j.

Derived Shape any. Let H be a sequence and
P1 . . .Pn some shapes. Then

H[i; j] ' (any P1 P2 . . . Pn) =
n[

k=1

H[i; j] ' Pk.

Derived Shape concat. The syntax of the con-
catenation operator is:

(concat P1 P2 . . . Pn) for n � 0.

The following formulas give the semantics:

H[i; j] ' (concat) = f[k; k] j i � k � jg.

If n � 1, then [k;m] 2 H[i; j] ' (concat P1 . . . Pn)
i� there exists an l such that [k; l] 2 H[i; j] ' P1
and [l;m] 2 H[l; j] ' (concat P2 . . . Pn).

Derived Shapes: exact, atleast, atmost. The
syntaxes are:
(exact n P)

(atleast n P)

(atmost n P)

where n � 0.

These operators provide richer forms of concate-
nation. Their semantics is described as follows.

[k; l] 2 H[i; j] ' (atleast n P) i�
:9m � k ([m; k] 2 H[i; k] ' P) and
:9m � l ([l;m] 2 H[l; j] ' P) and
9m � n ([k; l] 2 H[i; j] ' (concatP1 . . . Pm)

where P1 = . . . = Pm = P)
[k; l] 2 H[i; j] ' (atmost n P) i�

:9m � k ([m; k] 2 H[i; k] ' P) and
:9m � l ([l;m] 2 H[l; j] ' P) and
9m � n ([k; l] 2 H[i; j] ' (concatP1 . . . Pm)

where P1 = . . . = Pm = P)

1

[k; l] 2 H[i; j] ' (exact n P) i�
:9m � k ([m; k] 2 H[i; k] ' P) and
:9m � l ([l;m] 2 H[l; j] ' P) and
([k; l] 2 H[i; j] ' (concat P1 . . . Pn)

where P1 = . . . = Pn = P)

Derived Shape: in. The syntax is:
(in n P) where n � 0 indicates the length of the

sequence in terms of time periods (transitions) for
which the condition expressed by the P argument
must hold.

H[i; j] ' (in n P) = f[k; k+n] j i � k^k+n �
j ^ [k; k+ n] 2 H[k; k + n] ' Pg.

Derived Shapes: nomore, noless, precisely.

The syntaxes are:
(nomore n P)

(noless n P)

(precisely n P)

where n � 0.

Even though these forms make sense in general,
they are restricted to use within the in shape.

[k; l] 2 H[i; j] ' (noless n P) i� i � k � l � j
and card(H[k; l] ' P) � n.

[k; l] 2 H[i; j] ' (nomore n P) i� i � k � l � j
and card(H[k; l] ' P) � n.

[k; l] 2 H[i; j] ' (precisely n P) i� i � k �
l � j and card(H[k; l] ' P) = n.

Derived Shape: inorder. The syntax is:
(inorder P1 . . . Pn) for n � 0.

Even though this form makes sense in general, it
is restricted to use within the in shape.

[k;m] 2 H[i; j] ' (inorder P1 . . . Pn) i� there
exist l0; k1; l1; . . . ; kn; ln such that i = l0 � k �
k1 � l1 � k2 � l2 . . . � kn � ln � m � j and
[ku; lu] 2 H[lu�1; j] ' Pu for 1 � u � n.

Derived Shapes: and, or. The syntaxes are:
(and P1 . . . Pn)

(or P1 . . . Pn)

where n � 0.

Even though these forms make sense in general,
they are restricted to use within the in shape.

H[i; j] ' (or P1 . . .Pn) = H[i; j] ' (any P1 . . .Pn).

H[i; j] ' (and P1 P2 . . .Pn) =
n\

k=1

H[i; j] ' Pk.

References

[1] R. Agrawal, G. Psaila, E. L. Wimmers, and
M. Za��t. Querying shapes of histories. IBM
Research Report RJ 9962 (87921), IBM Al-
maden Research Center, San Jose, California,
June 1995.

[2] D. J. Berndt and J. Cli�ord. Using dynamic
time warping to �nd patterns in time series.
In KDD-94: AAAI Workshop on Knowledge
Discovery in Databases, pages 359{370, Seattle,
Washington, July 1994.

[3] S. Chakravarthy, V. Krishnaprasad, E. Anwar,
and S.-K. Kim. Composite events for active
databases: Semantics, contexts, and detection.
In Proc. of the VLDB Conference, pages 606{
617, Santiago, Chile, September 1994.

[4] R. D. Edwards and J. Magee. Technical Analysis
of Stock Trends. John Magee, Spring�eld,
Massachusetts, 1966.

[5] S. Gatziu and K. Dittrich. Detecting composite
events in active databases using petri nets. In
Proc. of the 4th Int'l Workshop on Research
Issues in Data Engineering: Active Database
Systems, pages 2{9, February 1994.

[6] N. Gehani, H. Jagadish, and O. Shmueli. Com-
posite event speci�cation in an active databases:
Model & implementation. In Proc. of the VLDB
Conference, pages 327{338, Vancouver, British
Columbia, Canada, August 1992.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to
Automaton Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, Massachusetts,
1979.

[8] P. Seshadri, M. Livny, and R. Ramakrishnan.
SEQ: A model for sequence databases. In
Proc. of the IEEE Int'l Conference on Data
Engineering, Taiwan, 1995.

[9] S. Wu and U. Manber. Fast text searching
allowing errors. Communications of the ACM,
35(10):83{91, October 1992.

1

