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ABSTRACT
Preserving data privacy is of utmost concern in many sec-
tors, including e-commerce, healthcare, government, and re-
tail, where individuals entrust others with their personal in-
formation every day. Often, the organizations collecting the
data will specify how the data is to be used in a privacy
policy, which can be expressed either electronically or in
natural language. We describe a data model for enforcing
these limited disclosure rules in a relational database at cell-
level granularity. We then present a practical and efficient
architecture and algorithms for implementing this model.
Through a comprehensive set of performance experiments,
we show that the cost of privacy enforcement is small, and
scalable to large databases.

1. INTRODUCTION
The Lowell database research self-assessment of June 2003

points to data privacy as an important area for future re-
search [7]. The authors of [10] proposed the vision of a
“Hippocratic” database, a database system that is responsi-
ble for maintaining the privacy of the personal information
it manages. The authors propose a framework for man-
aging privacy sensitive information distilled down from the
private data handling practices that are being demanded in-
ternationally, and mandated through legislation such as the
United States Privacy Act of 1974 (Fair Information Prac-
tices), the EU Privacy Directive, which took effect in 1998,
the Canadian Standard Association’s Model Code for the
protection of Personal Information, the Australian Privacy
Amendment Act of 2000, the Japanese Personal Informa-
tion Protection Laws of 2003, and others. The framework is
based on ten broad principles central to managing private
data responsibly.

A vital principle among these is “limited disclosure,” which
the authors define to mean that the database should not
communicate private information outside the database for
reasons other than those for which there is consent from the
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information donor1. A straightforward solution would be to
implement this enforcement at the application, middleware,
or mediator level, as is done in Tivoli Privacy Manager[11]
and the TIHI security mediator[26]. However, this approach
leads to privacy leaks when applied to cell-level privacy en-
forcement, as we discuss in Section 2.5.

An ideal solution to the limited disclosure problem would
flexibly protect donor information without leaks, and would
incur minimal privacy “checking” overhead when processing
queries. Because of the time and expense required to mod-
ify existing application code, such a solution would require
minimal change to existing applications.

In this paper, we introduce a mechanism for enforcing lim-
ited disclosure. The main idea behind our solution is stor-
ing privacy policies and user choices inside the database, and
rewriting incoming queries to reflect these privacy semantics.
Specifically, we intercept an incoming query, and augment
the query as necessary to reflect both the privacy policy
and the donor’s preferences. We that our design meets the
desiderata just mentioned.

1.1 Related Work
This paper builds on work in the area of data security,

which can largely be grouped into the areas of discretionary
access control, role-based access control, and mandatory
access control [23]. Discretionary access control allows a
database to grant and revoke access privileges to individual
database users. In this case, the access control privileges
typically refer to entire tables or views. Role-based access
control allows a database to grant this type of privilege not
to an individual user, but the the user’s group, or role [25].
In the mandatory access control model, there is a single set
of rules governing access to the entire system, and individual
users are not allowed to grant or revoke access privileges.

A well-known model of mandatory access control, the Bell-
LaPadula model of multilevel secure databases, defines per-
missions in terms of objects, subjects, and classes [13]. Each
object is a member of some class, for example “Top Secret,’
“Secret”, and “Unclassified,” and in this model, the classes
typically form a hierarchy. Multi-level databases also al-
low for the possibility of polyinstantiation, where there ex-
ist data objects that appear to have different values to users
with different classifications [16]. These formalizations have
been further refined by [19] and [20], and a schema decom-
position allowing element-level classification to be expressed

1We use the term donor to mean the individual whose pri-
vate information is stored and managed by the database
system.



as tuple-level classification is described in [22].
The Oracle 8i product implements some of these ideas in

its “Row Level Security” (also known as “Virtual Private
Database”) feature, which allows specification of security
policies at the row level, and augments incoming queries
with additional predicates to reflect the security policy[1].
Multi-level security was also implemented in Sybase’s Secure
SQL Server[4] and Informix OnLine/Secure[3], and work was
done to benchmark row-level classification in multi-level se-
cure database systems[18]. The notion of “reformulating”
queries for security was also alluded to by[26], and [8] uses
a query rewrite mechanism to control access to federated
XML user-profile data.

In some ways, our ideas can be viewed as an adaptation
of the ideas and semantics of multi-level and role-based ac-
cess control. Our problem considers the task of assigning
(purpose, recipient) pairs (the subjects) access to data cells
(objects), which are grouped into data categories (classes).
However, the privacy problem requires an additional degree
of flexibility. In the limited disclosure problem all data as-
signed to a particular category does not necessarily have
the same access semantics because of conditional rules, like
opt-in and opt-out choices. This leads to more complex per-
missions management. However, our problem also allows
for an important key simplification, as we need not allow
polyinstantiation of data.

As far as we could determine, the only implementation of
a DBMS with cell-level access control was done by SRI in
the SeaView system[16], but a performance evaluation was
never published[5]. Numerous content-management appli-
cations have enforced fine-grained security by introducing
an application layer that modifies queries with conditions
that enforce access control policies, e.g., [2][21], but they
are application-specific in their design and do not extend
a DBMS for general use. We provide a high-performance
cell-level solution to the limited disclosure problem that ex-
tends a DBMS with support for limited disclosure, and can
be deployed to an existing environment without modifica-
tion of existing applications, and we study the performance
implications of such a system. The wide use of fine-grained
security by applications offers additional evidence that ex-
tending a DBMS with this capability is overdue.

There has been extensive research in the area of statisti-
cal databases motivated by the desire to provide statistical
information (sum, count, etc.) without compromising indi-
vidual information (see surveys in [9], and [27]). It was also
shown that we cannot provide high quality statistics and at
the same time prevent partial disclosure of individual data.
Our goal in this paper is to provide database support that
allows individual queries to respect donors’ preferences and
choices, and we assume that additional mechanisms such as
query admission control and audit trails [9] are in place to
guard against the inference problem.

1.2 Paper Organization
This paper is organized as follows. First, we introduce

the limited disclosure problem as it relates to a relational
database. We then describe several a limited disclosure mod-
els for relational data and their semantics. We describe a
basic implementation architecture for limited disclosure and
some optimizations to this architecture. Finally, we evalu-
ate the performance of our implementation, and point out
topics of future research.

2. LIMITED DATA DISCLOSURE
One of the defining principles of data privacy, limited data

disclosure is based on the premise that information donors
should be given control over who is allowed to see their per-
sonal information, and under what circumstances. For ex-
ample, patients entering a hospital must provide some infor-
mation at the time of admission. The patient understands
that this information may only be used under certain cir-
cumstances. The doctors may use the patient’s medical
history for treatment, and the billing office may use the
patient’s address information to process insurance claims.
However, the hospital may not give patient address infor-
mation to charities for the purpose of solicitation without
consent.

Frequently, an organization will define a privacy policy
describing such an agreement. Comprised of a set of rules,
the privacy policy is a contract between the individual pro-
viding the information and the organization collecting the
information. Data items are classified into categories. We
assume for simplicity that these categories are mutually ex-
clusive. For each category of data, the rules in the privacy
policy describe the class of individuals who may access the
information (the recipients), and how the data may be used
(the purposes). The policy may specify that the data items
belonging to a category may be disclosed, but only with
“opt-in” consent from the donor. The policy may also spec-
ify that data items belonging to a category will be disclosed
unless the donor has specifically “opted-out” of this default.
There is much existing work regarding electronic privacy
policy definition[6][12][15].

A solution to the problem of limited disclosure would
ensure that the rules contracted in these privacy policies
are enforced. More specifically, each query issued to the
database would be issued in conjunction with a particular
purpose and recipient. The database would prohibit the out-
flow of data, except when the privacy policy includes a rule
permitting disclosure of the data to the appropriate purpose
and recipient. In our hospital example, a query issued for
the purpose of “solicitation” and recipient “external charity”
would only reveal the personal information of those patients
who provided consent.

2.1 Limitations of Tuple-Level Enforcement
Consider a table containing patient information, as shown

in Figure 1. The data items “Name” and “Age” have been
grouped into the data category “Personal Information.” Sim-
ilarly, “Address” and “Phone” have been included in the
“Address Information” category. The hospital allows pa-
tients to choose on an opt-in basis if they want these cat-
egories of information to be released to charities(recipient)
for solicitation(purpose). Figure 2 shows the choices made
by the patients.

With row-level enforcement, clearly Alice’s record should
be visible to charities for solicitation, and Bob’s record should
be invisible. However, there is a problem with the records
of Carl and David. In this case, we must either filter in-
formation that is actually permitted, or we must disclose
information that is prohibited. In the following sections,
we first describe, and then formally define, three models of
cell-level enforcement.

2.2 Strict Cell-Level Enforcement
The above problem can be solved by defining a model of



Patient# Name Age Address Phone
1 Alice Adams 10 1 April Ave. 111-1111
2 Bob Blaney 20 2 Brooks Blvd. 222-2222
3 Carl Carson 30 3 Cricket Ct. 333-3333
4 David Daniels 40 4 Dogwood Dr. 444-4444

Figure 1: Full data table of patient information.

Patient# ID Info Personal Info Address Info
1

√ √ √
2 × × ×
3

√ × √
4

√ √ ×
Figure 2: Patient choices for disclosure of informa-
tion to charities for solicitation.

Patient# Name Age Address Phone
1 Alice Adams 10 1 April Ave. 111-1111
- - - - -
3 - - 3 Cricket Ct. 333-3333
4 David Daniels 40 - -

Figure 3: Privacy-enforced table of patient informa-
tion, using strict cell-level enforcement.

Patient# Name Age Address Phone
1 Alice Adams 10 1 April Ave. 111-1111
3 - - 3 Cricket Ct. 333-3333
4 David Daniels 40 - -

Figure 4: Privacy-enforced table of patient informa-
tion, using table semantics.

Name Age
Alice Adams 10
- -
David Daniels 40

Name Age
Alice Adams 10
David Daniels 40

Figure 5: Comparing Table Semantics and Query
Semantics for a simple projection

cell-level enforcement. One way of defining such a model
would be to “mask” prohibited values using the null value.
We assign each (purpose, recipient) a view of each table,
T, in the database. Each view contains precisely the same
number of tuples as the underlying table, but prohibited
data elements are replaced with null. The view correspond-
ing to our hospital example is given in Figure 3. We term
this model Strict Cell-level enforcement, and we provide a
formal definition in Figure 6.

2.3 Table Semantics Limited Disclosure Model
The strict cell-level model is attractive because of its sim-

plicity. However, if we want the privacy enforced data tables
to be consistent with the relational data model, we must also
ensure that the primary key is never null.

For this reason, we define another cell-level model, which
we term Table Semantics enforcement. Here, we assign
each (purpose, recipient) pair a view over each table in the
database, and as before, prohibited cells are replaced with
null values. However, in this case we allow both entire tu-
ples and individual cells to have privacy semantics. The
privacy semantics of the primary key are used to indicate
the privacy semantics of the entire tuple. If the primary key
is prohibited, then the entire tuple is prohibited. When we
apply this model to a table, the result is that we filter pro-
hibited tuples from the result set, and then we replace any
remaining prohibited cells with the null value, as is done

Consider a list of m purpose-recipient pairs
P =< P1, P2, ..., Pm >.

Every table T with n data columns is (conceptually)
extended with m ∗ n columns that record opt in/out
”choices”. Each choice represents a decision by the donor
of the data record to allow or disallow access to a given
column for a given purpose-recipient pair.

We use the notation T [i], 1 ≤ i ≤ n, to refer to the
data columns of T . We use T [i, j], 1 ≤ i ≤ n, 1 ≤ j ≤ m,
to refer to the “choice” column that contains the donor’s
choice for data column i and purpose-recipient pair j. For
any set of columns S in a table T , we use “t[S] allnull”
to denote that all columns in S are null in tuple t of T .
Similarly, “t[S] nonenull” denotes that every column in S
is non null in tuple t.

Definition 1. Strict Cell-level Enforcement Let T be a
table with n data columns and let K be the set of fields
that constitute the primary key of T . For a given purpose-
recipient pair Pj, the table T is seen as TPj , defined as
follows:

{r|∃t ∈ T ∧ ∀i, 1 ≤ i ≤ n

(r[i] = t[i] if t[i, j] = “Allowed”,

r[i] = null otherwise)}

Definition 2. Table Semantics Enforcement Let T be a
table with n data columns and let K be the set of fields
that constitute the primary key of T . For a given purpose-
recipient pair Pj, the table T is seen as TPj , defined as
follows:

{r|∃t ∈ T ∧ ∀i, 1 ≤ i ≤ n

(r[i] = t[i] if t[i, j] = “Allowed”,

r[i] = null otherwise)

∧ r[K] nonenull}

Definition 3. Query Semantics Enforcement Consider a
query Q that is issued on behalf of some purpose-recipient
pair Pj and that refers to table T . Query Semantics is en-
forced as follows:
(1) Every table T in the FROM clause is replaced by TPj ,
i.e., the version of T under Strict Cell-Level semantics.
(2) Result tuples that are null in all fields of Q are discarded.

Figure 6: Definitions for Strict Cell-level, Table Se-
mantics, and Query Semantics enforcement



in[16]. The resulting table of patients from our hospital ex-
ample is shown in Figure 4, assuming that Patient# is the
primary key. We formally define this model of enforcement
in Figure 6.

In SQL, null is a special value meant to denote “no value”
[14]. Intuitively, it makes sense in our problem to use null
as a placeholder when a value is not available to a particu-
lar purpose and recipient. Adopting the semantics of SQL
queries run against null values is desirable for several rea-
sons:

• Predicates applied to null values, such as X > null,
will not evaluate to true. Because null values are de-
fined this way, predicates applied to privacy enforced
tables will behave as though the prohibited cells were
not present.

• Similarly, null values do not join with other values.
Thus the results of a join query issued to one of the
privacy enforced tables will produce results as if the
null cells were not present.

• Null values do not affect computation of aggregates, so
an aggregate computed over a privacy enforced table is
actually computed based only on the values available
to the purpose and recipient.

There are some well-documented semantic anomalies in-
herent in the use of null values [14]. For example, the SQL
expression AVG(Age) is not necessarily equal to the expres-
sion SUM(Age)/COUNT(*). An expression such as SELECT *

FROM Patients WHERE AGE > 50 OR AGE <= 50, which might
be expected to return all tuples in Patients, may not do so
in the presence of nulls.

Replacing prohibited values with nulls makes some as-
sumptions about the practical meaning of the null value.
While it is not its intended use, in practice null may carry
implied semantic meaning. In our hospital example, a null
value in the Phone column may indicate that a patient has
no phone. To alleviate this problem, one might consider
defining a new data value, prohibited, carrying special se-
mantics with regard to SQL queries, to act as a placeholder.

2.4 Query Semantics Limited Disclosure Model
The table semantics model defines a view of each data

table for each (purpose, recipient) pair, based on the asso-
ciated privacy semantics. These views combine to produce
a coherent relational data model for each (purpose, recipi-
ent) pair, and queries are executed against the appropriate
database version.

An alternative to this approach is to do enforcement based
on the query itself. Unlike table semantics, here we remove
prohibited data from a query’s result set based on the pur-
pose, recipient, and the query itself. We call this the Query
Semantics enforcement model. For example, using our hos-
pital table, suppose we were to project the “Name” and
“Age” columns from the Patients table. Using query se-
mantics, the result of this query would be the table on the
right of Figure 5; using table semantics, we would obtain
the table on the left. We formally define the query seman-
tics model in Figure 6. Because this model filters records in
response to the issued query, and we do not aim to define
a version of the underlying relation for each purpose and
recipient, a tuple in the query result set may include a null

value for an attribute that is part of the primary key in the
underlying schema.

This model benefits from the same properties of null val-
ues discussed above. However, these semantics cause some
anomalies in certain cases. For example, COUNT aggregates
may observe different numbers of records depending on the
column. For example, if the Salary attribute is provided
based on a condition, and the Name attribute is provided
unconditionally, COUNT (Name) and COUNT (*) will likely ob-
serve higher counts than COUNT (Salary).2 In some cases
these slight semantic departures buy substantial performance
gains, as we show in our experimental results, but the se-
mantic tradeoff should be carefully considered.

2.5 Application-level Limited Disclosure
There are several possible approaches to implementing

application-level privacy enforcement. One such approach
is to first retrieve the requested data from the database,
and then apply the appropriate enforcement before return-
ing the data to the user. In a cell-level enforcement scheme,
this approach leads to significant difficulties.

For example, consider a query involving a predicate over
a privacy-sensitive field: SELECT * FROM PATIENTS WHERE

DISEASE = Hepatitis, and a patient who chose to disclose
his name, but not his disease history. An application-level
enforcement scheme might do the following to execute this
query: First, the application would issue the query to the
database, and retrieve the result set. Then, the application
would go through each of the resulting records, and based
on the privacy semantics, replace prohibited cells with null.
However, this approach is flawed. In the previous example,
the query results would contain the patient’s records, with
the Disease field blocked out. Unfortunately, this allows
anyone to conclude from looking at the results that this pa-
tient has Hepatitis, even though he had chosen not to share
this information.

This type of leakage is not a problem in the table seman-
tics or query semantics model because data values that are
not visible to a particular purpose and recipient are removed
prior to query execution.

An alternative approach might select all of the Patient
data from the database (in our example, this would include
all patient records, not just those with a particular disease),
and apply the predicate in the application. However, this
leads to significant performance problems as it must fetch
data unnecessarily from the data. Query execution is more
difficult yet when we consider more complicated queries,
such as those involving aggregates or joins, because we must
extract a significant amount of data from the database, and
then perform a large amount of the query processing at the
application level.

3. IMPLEMENTATION ARCHITECTURE
We have developed a database architecture for efficiently

and flexibly enforcing limited disclosure rules. The basic
components of this architecture are the following:

• Policy definition Privacy policies must be expressed
electronically, and stored in the database where they
can be used to enforce limited disclosure.

• Query modifier SQL queries entering the database

2Thank you to <removed> for pointing out this anomaly.



should be intercepted, and augmented to reflect the
privacy semantics of the purpose and recipient issu-
ing the query. The results of this new query will be
returned to the issuer.

• Privacy meta-data This is where we store the addi-
tional information that will allow us to determine the
correct privacy semantics of an incoming query.

• Data and Choice Tables The data is stored in rela-
tional tables in the database. User choices (opt-in and
opt-out) must also be stored in the database.

In our prototype, privacy policies are defined using P3P
[15], and the privacy meta-data is stored in the database
as ordinary relational tables. We implement the prototype
enforcement module as an extension to the JDBC driver,
where queries are intercepted and rewritten to reflect the
privacy semantics stored in the privacy meta-data. In our
implementation, queries are issued via an HTTP servlet,
forcing the use of the secure driver.

There are two ways to determine the purpose and recip-
ient associated with a query. The first possibility is to ex-
tend the syntax of a SQL query to include this informa-
tion. For example, SELECT * FROM Patients FOR PURPOSE

Solicitation RECIPIENT External Charity. The second
possibility is to infer this information based on the applica-
tion context, similar to the approach implemented in [1]. Be-
cause the first method requires extensions to the query lan-
guage and modification to existing applications, we elected
to use the second option, though the rest of our implemen-
tation is compatible with either alternative. Our query in-
terceptor infers the purpose and recipient of the query based
on the issuing application. The context of each application
must be specified, and in our prototype, we store the con-
text information in an additional database table. We then
use this information to tag incoming queries with the appro-
priate privacy semantics based on the issuing application.

An overview of this architecture is given in Figure 7. In
the future, the query interception and modification com-
ponent may be moved into the database’s query processor
without changing the general approach. By the same token,
the privacy meta-data could be moved to an external medi-
ator database, which would be responsible for intercepting
and rewriting the query, as long as the user choices remain
in the same database as the donor data. In the following
sections, we first describe the basic implementation, show-
ing that it can be applied to any of the limited disclosure
models described above. We then describe model-specific
adjustments and optimizations.

3.1 Architecture Overview
We store the disclosure rules from a specified privacy pol-

icy inside the database, as the Privacy Meta-data. These ta-
bles capture the purpose and recipient information, as shown
in Figure 8, as well as conditions of the form attribute

<opr> value, which are used to resolve conditional access,
such as opt-in and opt-out choices. When a purpose P ,
recipient R, and data category D appear in a row of the
policy table, this indicates that D is available to recipient
R for purpose P . If this row contains condition values, it
means that P and R may access D, but with restrictions as
indicated by the condition. For example, the rules described
in Figure 8 indicate that address information is always pro-

Client

HTTP Servlet

Privacy Meta-Data Data Table Opt-in/ 
Opt-out 
Choices

Server

Rewrite Query

Database

JDBC Driver

Figure 7: Implementation architecture overview

vided to the billing office for the purpose of processing insur-
ance claims, but address information is provided to external
charities for solicitation only on an opt-in or opt-out basis.
These tables also capture the identification of the privacy
policy corresponding to each rule. We also store mappings
of data columns to the broader categories used by privacy
policies, as shown in Figure 9.

In addition to storing the data disclosure rules, we must
provide a mechanism for storing user choices. In the ba-
sic architecture, we store these values in additional choice
columns appended to the data tables themselves.

The basic enforcement mechanism intercepts and rewrites
incoming queries to incorporate the privacy semantics stored
in the privacy meta-data tables, as well as the user choices.
The mechanism uses case-statements to resolve choices and
conditions, and applies additional predicates to filter prohib-
ited records from the result set. The query rewrite algorithm
is a straightforward SQL implementation of the enforcement
definition.

Consider, for example, a data table Patients, containing
an attribute Phone. Under the privacy policy that is in
place, the Phone attribute is included in the Address cate-
gory, which is made available to charities for the purpose of
solicitation on an opt-in basis. The user choices for Address
information are stored in column Choice 1. The choices for
the primary key of the patients table, ID, are stored in col-
umn Choice 2. Suppose the following query is issued for this
recipient and purpose:

SELECT Phone FROM Patients

This query can be rewritten to resolve this particular con-
dition as follows, using the table semantics model:

SELECT
CASE WHEN Choice 1 = 1 THEN Phone ELSE null END
FROM Patients AS q1(Phone)
WHERE Choice 2 = 1

Similar rewriting techniques resolve the privacy semantics
of both allowed and prohibited categories. The rewriting al-
gorithm is given in Figure 10, and the algorithm for resolving
conditions is given in Figure 11. The Resolve Category(),
Resolve Policy(), and get Condition() functions mentioned



Purpose Recipient PID Category Choice Table Choice Col. Choice Opr. Choice Val.
Insurance Billing Office P1 Address - - - -
Solicitation External Charity P1 Address Patients Choice 1 = 1

Figure 8: Sample policy table from the privacy meta-data, showing two sample rules.

PID Table Name Column Name Category
P1 Patients Name Personal
P1 Patients Age Personal
P1 Patients Address Address
P1 Patients Phone Address

Figure 9: Sample data categories table from the privacy meta-data showing the mappings of data columns
to the data categories used by the policies.

Rewrite (Query Q, PolicyID PID, Purpose P, Recipient R)
{

for each table T referenced by Q

nested Select = "(SELECT "
for each column c ∈ T

cat = Resolve Category (T, c)
pSemantics = Resolve Policy (PID, P, R, T, cat)
if (pSemantics == FORBID)

nested select += Rewrite Null(T)
else if (pSemantics == CONDITION)

cond = get condition (PID, P, R, T, cat)
nested select += Rewrite Cond (T, c, cond)

else //(pSemantics == ALLOW)
nested select += c

nested select += " FROM T) AS q1("
for each column c ∈ T

nested select += c + ”, ”
nested select += ") )"
nested select += filterRows(Q, T, PID, P, R)

//Replace reference to T in query Q with
//new Select statement
Replace(Q, T, nested select)

}

Figure 10: Basic algorithm for rewriting queries for
privacy enforcement

in the algorithms are implemented as simple queries to the
privacy meta-data tables. When the policy store table con-
tains no rule corresponding to a particular purpose and re-
cipient, the Resolve Policy() function evaluates to FORBID.
If the policy table contains an appropriate rule, but the val-
ues of the condition columns are null, then Resolve Policy()
evaluates to ALLOW. Otherwise, it evaluates to CONDITION.
The FilterRows() function removes prohibited rows from the
result set, as indicated by either the table semantics (Fig-
ure 12) or query semantics (Figure 13) model.

3.2 Privacy Enforcement using Views
Based on the previous section, an alternative architec-

ture becomes apparent in the case of table-semantics en-
forcement. In this case, it is possible to achieve the same
enforcement using views, while circumventing the overhead
of rewriting incoming queries. This simplifies the architec-
ture greatly by capturing all of the information from the
meta-data tables described in the previous architecture in
a single table mapping (purpose, recipient) pairs to privacy
views of each table, as shown in Figure 14. These views can
be defined using the same case-statement mechanism we de-

Rewrite null(Table T) {
return "null"

}
Rewrite Cond(Table T, column c, Condition cond) {

//Resolve Conditions stored as
//Columns in the data table
return "CASE
WHEN " + cond.cond column +
cond.cond opr + cond.cond value +
"THEN c
ELSE null
END"

}

Figure 11: Case statements for resolving privacy se-
mantics of data attributes, including choices stored
as columns within the data table

scribed above, and at most we need to define one view for
each (purpose, recipient, policy) combination.

These views may be constructed once at policy installation
time, in which case we no longer need to store the privacy
policy table or the category table. Alternatively, we may
continue to store this information and lazily construct and
cache these views as each is requested. In either case, we
intercept incoming queries, and based on the purpose and
recipient information, redirect them to the appropriate view.

There is a complication to this approach when we con-
sider application queries with predicates over indexed data
columns. Consider for example the following query over a
data table in which SSN is an indexed data value, and the dis-
closure of SSN is governed by some choice stored in Choice 2.
Name is a non-indexed data value, and disclosure of Name is
governed by Choice 1. For simplicity, we ignore primary-key
based filtering in this example:

SELECT SSN, Name
FROM Participants
WHERE SSN = 222-22-2222

In this case, the query is translated to:

SELECT SSN, Name
FROM (SELECT CASE WHEN CHOICE 2 = 1 THEN SSN ELSE null END,

CASE WHEN CHOICE 1 = 1 THEN Name ELSE null END
FROM Participants) AS q1(SSN, Name)

WHERE q1.SSN = 222-22-2222

Unfortunately, executing this query in DB2 causes us to
discard the index on SSN because the reference to SSN is
buried inside a case-statement. To fix this problem, we can
pull the indexed data attribute and the corresponding choice
out to the predicate, where the index can more easily be
applied 3:

3Thank you to <removed> for pointing out this fix.



FilterRows (Query Q, Table T, PolicyID PID, Purp P, Recip R)
{

pKey Cats = unique categories in primary key

f = ""
if (∃k ∈ pKey Cats such that

Resolve Policy(PID, P, R, T, k) == FORBID)
//Attach an unsatisfiable predicate
f += "WHERE false"

else
for each k ∈ pkey Cats such that

Resolve Policy(PID, P, R, T, k) == CONDITION
cond = get condition(PID,P,R,c)
f += "WHERE " + cond.cond column +

cond.cond opr + cond.cond value
if more categories in pKey Cats

f += "AND"

return f
}

Figure 12: Algorithm for filtering prohibited
records using the table semantics model of en-
forcement

FilterRows (Query Q, Table T, PolicyID PID, Purp P, Recip R)
{

data Cats = unique categories projected by Q

f = ""
if (∃c ∈ data Cats such that

Resolve Policy(PID, P, R, T, c) == ALLOWED)
//no filtering

else if ¬∃c ∈ data Cats such that
Resolve Policy(PID, P, R, T, c) == CONDITION)

f += "WHERE 0 = 1"
else

for each c ∈ data Cats such that
Resolve Policy(PID, P, R, T, c) == CONDITION

cond = get condition(PID, P, R, c)
f += "WHERE " + cond.cond column +

cond.cond opr + cond.cond value
if more categories in data Cats

f += "OR"

return f
}

Figure 13: Algorithm for Filtering prohibited
records using the query semantics model of en-
forcement.
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Figure 14: Alternative architecture maps (purpose,
recipient) pairs to views of each table.

SELECT SSN, Name
FROM (SELECT SSN,

CASE WHEN CHOICE 1 = 1 THEN Name ELSE null END,
Choice 2
FROM Participants) AS q1(SSN, Name, Choice 2)

WHERE q1.SSN = 222-22-2222 AND q1.Choice 2 = 1

As this optimization is based on the query itself, it cannot
be incorporated into the view definition. We may only pull
the choice out to the predicate when the query includes a
predicate on the particular attribute.

3.3 Alternative Rewrite Algorithm
An alternative to the case-statement rewrite mechanism

implements the Table Semantics and Query Semantics en-
forcement models using the left outer join and full outer join
operators respectively.

Consider the same query we translated using the case-
statement algorithm in Section 3.1, with privacy semantics
as described previously:

SELECT Phone FROM Patients

This query can be rewritten as follows to reflect the table
semantics enforcement model:

(SELECT
ID WHERE Choice 2 = 1) AS t1(ID)
LEFT OUTER JOIN

(SELECT
ID, Phone WHERE Choice 1 = 1
FROM Patients AS q1(Phone)
WHERE Choice 2 = 1) AS t2(ID, Phone)

ON t1.ID = t2.ID

The translation algorithm for table semantics is a SQL im-
plementation of the following relational algebra expression;
we omit the full SQL algorithm in the interest of space. Con-
sider some query Q; each table T referenced by Q contains
some attributes, a1 . . . an. For simplicity, we assume these
attributes belong to separate categories. Let k represent
the primary key of T , and for simplicity assume that the
primary key is comprised of just one column. We replace
Q’s reference to T with the following, where ”n” denotes
the left outer join operator:

[σk=“Allowed”(Πk(T ))] n$1=$1 [σa1=“Allowed”(Πk,a1(T ))]

n$1=$1 . . .n$1=$1 [σan=“Allowed”(Πk,an(T ))]

We have a similar algorithm for query semantics. Consider
a query Q which projects a set of columns from some set
of tables. For each such table T , let p1 . . . pn denote the
columns of T projected by Q, and let k be the primary
key of T . Again, assume each category contains just one
column, and the primary key contains just one column. We
replace the reference to T by Q with the following, where
”×” denotes the full outer join operator:

[σp1=“Allowed”(Πk,p1(T ))] ×$1=$1 [σp2=“Allowed”(Πk,p2(T ))]

×$1=$1∨$3=$1 . . .×$1=$1∨$3=$1∨... [σan=“Allowed”(Πk,an(T ))]

It is worth noting that in DB2 the outer join rewrite al-
gorithm cannot be applied to queries of the form "SELECT

FOR UPDATE" because of the join operators involved. This
is similar to the fact that, in general, views joining multi-
ple tables are not updatable. However, in this case, there
is a straightforward translation from the view update to a
table update, so in the future the database system could be
extended to handle this case.



The SeaView system took a similar approach in construct-
ing cell-level access control [16]. In the SeaView system,
multilevel relations existed only at the logical level, as views
of the data. They were actually decomposed into a collec-
tion of single-level tables, which were physically stored in
the database. The multi-level relations were recovered from
the underlying relations using the left outer join and union
operators. However, there are important performance im-
plications in choosing to use an outer join rewrite algorithm
for limited disclosure, as we discuss later in the paper.

3.4 Alternative Choice Storage
The basic architecture takes a simple approach to storing

user choice values by appending additional columns to the
data table T . We refer to this as the internal storage design.
If the number of choices increases as the application evolves
over time, modifying the application schema may be costly
in this approach. In addition, a space overhead is paid per
application record.

We now consider alternative approaches for storing choices
externally4, in tables other than data tables. To some ex-
tent, these alternatives represent a tradeoff between query
efficiency and ease of deployment 5.

The multiple external table design uses one table per choice.
The schema of each external choice table consists of a foreign
key that references table T . The table Ci corresponding to
choice i contains one row for each tuple of T for which the
donor of the data opted in for the ith choice. Thus, if the
data table T is extended with n choices to yield the internal
design T ′, table Ci = πkey(σchoicei=1(T

′)) for choice i.
The choice tables involved in VC correspond to choices

for columns mentioned in the query, partitioned into key
and non-key choices. Key (resp. non-key) choices are those
that involve key (resp. non-key) attributes in T . A tuple
of T is not visible unless the donor has opted in for all key
choices; therefore, the corresponding choice tables are com-
bined using joins in the view VC . A non-key choice deter-
mines whether the corresponding field is visible (assuming
that the tuple is visible according to the key choices). This is
enforced by using left-outer join to add each non-key choice
table to VC . The case statements in the query modification
algorithm test whether the choice field (generated from the
outer join of the corresponding external table) is 1 or null
to determine whether the contents of a field are visible.

The single external table design replaces the multiple ex-
ternal tables with a single table CC . The schema contains
two fields: the key for table T and a choice field whose val-
ues lie in the range 1...n where n is the number of choices.
If the donor of a record with key k has opted into the ith
choice, the record < k, i > is in CC . The basic query modi-
fication algorithm is similar to that in the external multiple
table design; the main difference is that selections on the
second field of CC are used to generate subsets of CC that
correspond to the tables Ci in the multiple table design.

The external choice store design is particularly attrac-
tive in two instances. First, deployment requires little or
no modification to existing data tables. Second, it offers
more flexibility for handling conditions more complex than

4The delineation between internal and external storage al-
ternatives is based on a similar classification in [24] used in
the context of database support for set-valued attributes.
5In this section, we ignore any potential incompatibility with
the FOR UPDATE command mentioned previously.

simple choices. However, the clear downside is the cost in-
curred by performing additional joins for each query. When
comparing multiple versus single external designs, multiple
consumes less space but at the expense of using the catalog
significantly more.

While the discussion of storage alternatives has been fo-
cused on external designs, we also considered internal design
alternatives. For example, instead of storing a 0 to denote
an opt-out, a null value could have been used. Addition-
ally, the collection of choice fields can be abstracted as a
set-valued attribute. The schema of the application table
T can be appended with a set-valued attribute SC whose
values are drawn from the domain of choices. If a record r
in T has a choice Ci opted-in, r.SC must contain Ci.

The enforcement condition can then be expressed in terms
of the containment operator. Given a record r and a set-
value S, the containment operator returns r if every member
s ∈ S also satisfies s ∈ r.SC . Assuming the CASE statement
can be extended to test for containment in r.SC , the rewrite
algorithm could utilize such a set-valued approach. With
regards to storage, external and internal alternatives are ap-
plicable to set-values as well. Furthermore, for internal al-
ternatives, representations such as bit-maps and techniques
such as compression can be leveraged.

4. PERFORMANCE EVALUATION
We performed extensive experiments to study the perfor-

mance of our architecture and of query modification as a
method of enforcing limited disclosure. Our experiments
are intended to address the following key questions:

• Overhead of Privacy Enforcement What is the
overhead cost introduced by privacy checking? We ad-
dress this question through an experiment that factors
out the impact of choice selectivity. In the worst case,
we incur the cost of checking privacy semantics, but
we do not gain any performance by filtering prohib-
ited tuples from the result set.

• Scalability We test the scalability of our rewrite al-
gorithm in terms of database size and application se-
lectivity. We vary both the percentage of users who
elect to share their data for a particular purpose and
recipient (choice selectivity)6, and the percentage of
the records selected by an issued query (application
selectivity).

6Except where otherwise noted, our experiments use cell-
level enforcement, but make the simplifying assumption that
access to all columns in the data table is based on a sin-
gle opt-in/opt-out choice. This means that every record is
either fully visible or fully invisible; however, for the case-
statement rewrite mechanism we still perform cell-level en-
forcement by evaluating a case statement over each column.
In the table semantics model, this assumption does not in-
fluence execution time. If the primary key is allowed, then
we fetch the tuple and process a case statement for each cell.
For the query semantics model, the number of independent
“optable” columns only influences performance insofar as it
influences the number of tuples retrieved, so it is possible
to assess the performance of “multi-catagory” tables using
a single category evaluation. The number of independent
data categories in a table does influence the performance of
the outer join algorithm, as it dictates the number of joins
necessary. We discuss this issue in Section 4.2.4.



Attribute Description
Unique2 (integer) Primary key, Sequential order
Unique1 (integer) Candidate key, random order
Onepercent (integer) Values 0-99, random order
Tenpercent (integer) Values 0-9, random order
Twentypercent (integer) Values 0-4, random order
Fiftypercent (integer) Values 0-1, random order
stringu1 (32-byte string) Unique character string
stringu2 (32-byte string) Unique character string
Choice 0 (integer) Values 0-1 (1% = 1), indexed
Choice 1 (integer) Values 0-1 (10% = 1), indexed
Choice 2 (integer) Values 0-1 (50% = 1), indexed
Choice 3 (integer) Values 0-1 (90% = 1), indexed
Choice 4 (integer) Values 0-1 (100% = 1), indexed

Figure 15: Benchmark dataset and choice values are
stored in the same table.

• Impact of Filtering In both the table and query
semantics models, there are cases where tuples are fil-
tered entirely from the result set of a query. We per-
form an experiment to show the impact of this filtering
on performance.

• Enforcement Model We study the performance im-
plications of choosing the Table Semantics or Query
Semantics enforcement model.

• Rewrite Algorithms: Case vs. Outer Join We
briefly compare the performance of the case-statement
and the outer join rewrite algorithms.

• Views vs. Complete Query Rewrite We discuss
the tradeoff between defining and caching privacy views
and performing complete query rewrite for table se-
mantics enforcement. We measure the cost of com-
pletely rewriting queries in our Java prototype imple-
mentation. We also discuss the implications of mate-
rializing the privacy-preserving view.

• Choice Storage We discuss the implications of choos-
ing among the various modes of choice storage.

There are several distinct sources of performance cost in
our architecture, which we isolated in our performance ex-
periments.

• Query Rewrite Our implementation intercepts and
rewrites queries. This component includes indexed
lookup queries to the privacy meta-data. The cost of
rewriting a query is constant in the number of columns
and categories in the underlying table schema, and rel-
atively small compared to the cost of executing the
queries themselves.

• Query Execution The cost of executing the rewrit-
ten query includes some amount of I/O, CPU process-
ing, and the cost of returning the resulting data to the
application.

4.1 Experimental Setup
We evaluate the performance of our architecture and en-

forcement algorithms using a synthetically-generated dataset,
based on the Wisconsin Benchmark[17]. The synthetic data
schema is described in Figure 15. All experiments were run
on a single 750 MHz processor Intel Pentium machine with 1

GB of physical memory, using DB2 UDB 8.1 and Windows
XP Professional 2002. The buffer pool size was set to 50MB,
and the pre-fetch size was set to 64KB. All other DB2 de-
fault settings were used, and the query rewrite algorithms
were implemented in Java.

To measure the cost of rewriting queries, we used the sys-
tem clock. To measure the cost of executing queries, we used
the DB2batch utility. Each query was run 6 times, flushing
the buffer pool, query cache, and system memory between
unique queries. The results given below represent the warm
performance numbers, the average of the last 5 runs of each
query. The size of the data table is 5 million records, except
where otherwise noted.

4.2 Experimental Results and Analysis

4.2.1 Overhead and Scalability
Our first set of experiments measures the overhead cost

of performing privacy enforcement and the scalability of our
algorithms to large databases. To measure this cost, we
consider simple selection queries, with predicates applied to
non-indexed data columns. We report the results for our
table semantics privacy enforcement model, but the trends
are similar for query semantics. We assume, as described
previously, that all columns in the table belong to a single
data category, with a single choice value. To measure the
overhead cost of enforcement, we consider the worst case
scenario as described above, where the choice selectivity is
100%, so we incur all the cost of privacy processing, but do
not see the performance gains of filtering.

Figure 16 shows the overhead cost of executing queries
rewritten for privacy enforcement over tables containing 1
million and 10 million records. The graphs show the total
execution time for queries with various application selectiv-
ity levels, and of the same queries rewritten using the case-
statement rewrite algorithm. In all of these examples, the
query plan is a sequential scan. The rewritten queries show
the overhead of processing the additional case statement for
each cell. Figure 17 shows the CPU time used in executing
these same queries, in particular the extra cost of processing
the additional case statements.

Because the figures show the warm performance num-
bers, the results of queries over the 1 million-tuple table
can largely be processed from the buffer pool. In the case
of the 10 million-tuple table, however, the size of the table
exceeds the size of the buffer pool and the query processing
incurs disk I/O. Thus, in the case of the former, the cost
is dominated by the CPU time spent processing the case
statements, whereas in the latter, the cost is dominated by
I/O. As the application filters fewer tuples, the CPU cost
increases, but because the queries are executed as sequential
scans, the I/O cost does not change, explaining Figures 16
and 17. The total cost increases when we increase the table
size from 1 million to 10 million records, but this cost is
dominated by the I/O.

4.2.2 Implications of Filtering due to Choice Selec-
tivity

In cases with choice selectivity less than 100%, the rewrit-
ten queries perform significantly better because, through the
use of a choice index, they need to read fewer tuples. In
this experiment, the application query selects all 5 million
records in the table. However, the rewritten queries vary the



Table Size: 1 million, no index

Table Size: 10 million, no index

Figure 16: Total performance overhead of table se-
mantics enforcement using case-statement rewrite
with choice selectivity = 100%

Table Size: 1 million, no index

Table Size: 10 million, no index

Figure 17: CPU overhead of table semantics en-
forcement using case-statement rewrite with choice
selectivity = 100%

Figure 18: Comparing the cost of executing rewrit-
ten and original queries for varying choice selectiv-
ity; Application selectivity = 100%

choice selectivity. Note that in our experiment, the queries
with a choice selectivity of .01, .1, and .5 used the index on
the choice column; the others did not.

As can be seen from Figure 18, the performance gain is
considerable for low choice selectivity. When the choice se-
lectivity is near 100%, we incur the cost of privacy checking,
but do no benefit from choice selectivity. Still, the cost of
enforcement is quite low.

4.2.3 Performance Differences Among Enforcement
Models

There is a clear performance distinction between the ta-
ble semantics and the query semantics privacy models, which
becomes clear when we consider a table comprised of columns
belonging to different data categories, with independent pri-
vacy rules.

In the table semantics model, a tuple is filtered from the
result set if the primary key is forbidden. In this case, if
the underlying table schema is defined as suggested in Sec-
tion 2.3, and a record is made visible if any of its attributes
are visible, then it is convenient to think of the indepen-
dent choice selectivities for all of the projected columns
combining to form the effective choice selectivity. If we
consider some table, T , containing x categories, such that
the choice selectivities for the categories are independent of
one another, the effective selectivity can be determined by
1 − ∏x

i=1(1 − si), where si is the choice selectivity corre-
sponding to category i.

This is not the case when we consider the query seman-
tics model. Here, the effective choice selectivity is not deter-
mined by the underlying table schema; instead it is deter-
mined by the selectivities of only those columns projected
by the query. In many situations, this leads to substan-
tial performance gain, as we need to read and return fewer
tuples.

However, in some situations, this performance gain may
be offset because the query semantics rewrite algorithm yields
a query that is less likely to use indices on the choice columns.
For instance, if our query projects two columns belonging to
two separate categories, in the query semantics model, the
filtering predicate might include a disjunction of the form,
WHERE Choice 0 = 1 OR Choice 1 = 1. We observed that
when executing the above predicate, the optimizer does not
make use of the indices on either Choice 0 or Choice 1 even
though the combined selectivity of the two choices is low.
Our conjecture is that the choice indexes were not incorpo-
rated in the query plan because of the disjunction in the



Figure 19: Comparing case statement executed as
a sequential scan and outer join rewrite algorithms
for indexed choice values.

predicate.

4.2.4 Comparing Rewrite Algorithms
In most situations, our case-statement rewrite algorithm

substantially outperforms the outer-join rewrite algorithm,
and for good reason. The outer join algorithm scales poorly
because of the repeated and costly join operations involved.
For large tables with high choice selectivity (many tuples se-
lected), the performance was quite poor, so we have omitted
those results from the paper.

However, there are some specific situations where the outer
join algorithm does perform better than using case-statements.
For example, we observed in the previous section that the
DB2 optimizer did not use choice indexes for a query with
a predicate including a disjunction of conditions. However,
the outer join rewriting algorithm was more likely to be able
to use such indexes.

Figure 19 compares the performance of the outer join
rewritten query with a case-statement rewritten query per-
forming a sequential scan. These are the results for a query
consisting of two categories and performing query seman-
tics enforcement, so the outer join query includes one join.
A complete characterization of conditions under which the
outer join rewrite algorithm should be selected over the case-
statement algorithm is the subject of future work.

4.2.5 Query Rewriting vs. Views
We showed that it is possible to implement a table seman-

tics enforcement mechanism by redirecting incoming queries
to predefined privacy views, rather than entirely rewriting
the incoming queries. In practice, these two methods yield
identical query execution performance, except when we have
to perform additional rewriting to avoid discarding a useful
index, as explained in Section 3.2. In this case, the perfor-
mance impacts of not using an index may be substantial.

The views implementation avoids much of the cost of
rewriting queries to reflect the privacy semantics. However,
this cost is constant in the number of columns, and for large
tables and complex queries, small compared to the cost of
executing the queries themselves. The cost of querying the
privacy meta-data is negligible because these queries are im-
plemented as simple indexed lookups. For eight columns,
from distinct data categories, the average time to rewrite a
query in our Java implementation averaged approximately
0.15 seconds when we pooled the privacy meta-data connec-
tions.

An alternative, feasible only as a method of optimizing
performance for a few (purpose, recipient) pairs, is actually

Figure 20: Performance of queries executed over a
privacy-preserving materialized view.

Figure 21: Performance of external, multiple table
storage method for two application predicate selec-
tivities as compared to the internal storage method.

materializing the view. Querying the materialized view is
very inexpensive, as shown in Figure 20, though we must
take into account the effort needed to maintain the view as
the underlying data tables are updated. For each data table,
this solution requires us to store one table, which could be
as large as the original data table, per (purpose, recipient)
pair.

4.2.6 Comparing Choice Storage Methods
The following experiments address some of the tradeoffs

involved in deciding which storage design to use. We fo-
cus on two factors that influence performance: the added
join processing cost of external versus the extra bandwidth
required by internal.

The first experiment demonstrates the overhead associ-
ated with external methods for a variety of choice and ap-
plication selectivities. The 5-million record relation with
schema shown in Figure 15 is decomposed into both exter-
nal single and multiple table alternatives. Figure 21 shows
how the performance of external single degrades with respect
to the internal storage alternative as application and choice
selectivity are increased. External single is not shown, as it
degrades very quickly but it should be noted that its per-
formance levels off and eventually beats multiple external
for low selectivity application and choice predicates. In ei-
ther case, the added flexibility of external methods would
be difficult to justify at such low predicate selectivities.

The second experiment was designed to see if and when ex-
ternal could out-perform the internal method. For a variety
of application and choice selectivities, the internal table’s
choices were increased to 50 and 100 columns. While the
most selective choice predicate considered (1%) still favored



the internal design, the external multiple performed better
at 10% choice selectivities, continuing the trend up to 50%
selectivity.

5. CONCLUSION AND FUTURE WORK
Limited disclosure is a vital component of a data privacy

management system. We presented several models for lim-
ited disclosure in a relational database. We then proposed
a scalable architecture for enforcing limited disclosure rules
at the database level. Application-level solutions are ineffi-
cient and unable to process arbitrary SQL queries efficiently
and without leaking private information. By pushing the
enforcement down to the database, we gain improved per-
formance and query power, without modification of existing
application code. We showed that the performance over-
head of performing database-level privacy enforcement is
small and scalable, and often times the overhead is more
than offset by the performance gains obtained through tu-
ple filtering.

There are several important extensions to this architec-
ture that are areas of ongoing and future work. One such
extension would allow us to assign versions to privacy poli-
cies. In this case, personal data would be permanently
linked with the policy in place at the time of collection.
The database would then be responsible for enforcing these
multiple policies as queries are issued. Another such exten-
sion would provide granular privacy enforcement for data
modification commands. Also of interest is the problem of
identity management. In our implementation, we infer the
purpose and recipient based on the application issuing the
query. However, there are a multitude of alternative ways
of defining and obtaining this information. Lastly, we are
looking at ways of efficiently maintaining an audit trail that
would allow us to report all data disclosures for the purpose
of guaranteeing regulatory compliance.
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