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ABSTRACT: We consider the problem of mining association rules on a shared-nothing multipro-

cessor. We present three parallel algorithms that represent a spectrum of trade-o�s between compu-

tation, communication, memory usage, synchronization, and the use of problem-speci�c information.

We describe the implementation of these algorithms on IBM POWERparallel SP2, a shared-nothing

machine. Performance measurements from this implementation show that the best algorithm, Count

Distribution, scales linearly and has excellent speedup and sizeup behavior. The results from this

study, besides being of interest in themselves, provide guidance for the design of parallel algorithms

for other data mining tasks.
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1. Introduction

With the availability of inexpensive storage and the progress in data capture technology, many

organizations have created ultra-large databases of business and scienti�c data, and this trend is

expected to grow. A complementary technology trend is the progress in networking, memory, and

processor technologies that has opened up the possibility of accessing and manipulating these massive

databases in a reasonable amount of time. Data mining (also called knowledge discovery in databases)

is the e�cient discovery of previously unknown patterns in large databases. The promise of data

mining is that it will deliver technology that will enable development of a new breed of decision-

support applications.

Recently, there has been considerable research in designing data mining algorithms (see, for ex-

ample, [3] [4] [5] [8] [7] [11] [10] [14] [12] [15] [16] [17] [18]). However, the work so far has been

concentrated on designing serial algorithms. Since the databases to be mined are often very large

(measured in gigabytes and even terabytes), parallel algorithms are required.

We present in this paper three parallel algorithms for mining association rules [2], an important

data mining problem. These algorithms have been designed to investigate and understand the perfor-

mance implications of a spectrum of trade-o�s between computation, communication, memory usage,

synchronization, and the use of problem-speci�c information in parallel data mining. Speci�cally,

1. The focus of the Count Distribution algorithm is on minimizing communication. It does so even

at the expense of carrying out redundant duplicate computations in parallel.

2. The Data Distribution algorithm attempts to utilize the aggregate main memory of the system

more e�ectively. It is a communication-happy algorithm that requires nodes to broadcast their

local data to all other nodes.

3. The Candidate Distribution algorithm exploits the semantics of the particular problem at hand

to reduce synchronization between the processors and has load balancing built into it.

These algorithms have been implemented on an IBM POWERparallel System SP2 (henceforth referred

to simply as SP2), a shared-nothing machine [13]. We present measurements from this implementation

to evalue the e�ectiveness of the design trade-o�s.

These results, besides being of interest in themselves, have larger applicability. The performance

evaluation can provide guidance to the designers of parallel algorithms for other data mining tasks

(e.g. multi-level association rules [10] [19], sequential patterns [5]). The lessons learnt also carry over

to other machines with shared-nothing architectures (e.g. GAMMA [6], Teradata [20]).

The organization of the rest of the paper is as follows. Section 2 gives a brief review of the problem

of mining association rules [2] and the Apriori algorithm [4] on which the proposed parallel algorithms
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are based. Section 3 gives the description of the parallel algorithms. Section 4 presents the results of

the performance measurements of these algorithms. Section 5 contains conclusions.

2. Overview of the Serial Algorithm

2.1. Association Rules

Given a set of transactions, where each transaction is a set of items, an association rule is an

expression X ) Y , where X and Y are sets of items. The intuitive meaning of such a rule is that

transactions in the database which contain the items in X tend to also contain the items in Y . An

example of such a rule might be that 98% of customers that purchase tires and auto accessories also

buy some automotive services; here 98% is called the con�dence of the rule. The support of the

rule X ) Y is the percentage of transactions that contain both X and Y . The problem of mining

association rules is to �nd all rules that satisfy a user-speci�ed minimum support and minimum

con�dence [2]. Applications include cross-marketing, attached mailing, catalog design, loss-leader

analysis, add-on sales, store layout, and customer segmentation based on buying patterns.

Problem Decomposition. The problem of mining association rules can be decomposed into two

subproblems [2]:

1. Find all sets of items (itemsets) whose support is greater than the user-speci�ed minimum

support. Itemsets with minimum support are called frequent itemsets.1

2. Use the frequent itemsets to generate the desired rules. The general idea is that if, say, ABCD

and AB are frequent itemsets, then we can determine if the rule AB ) CD holds by computing

the ratio conf = support(ABCD)/support(AB). If conf � minimum con�dence, then the rule

holds. (The rule will have minimum support because ABCD is frequent.)

Much of the research has been focussed on the �rst subproblem as the database is accessed in

this part of the computation and several algorithms have been proposed [2] [4] [12] [14] [17] [18]. We

review in Section 2.2 the apriori algorithm [4] on which our parallel algorithms are based.

We chose to base our parallel implementation on the Apriori algorithm because of its superior

performance over the earlier algorithms [2] [12], as shown in [4]. We preferred Apriori over Apri-

oriHybrid, a somewhat faster algorithm in [4], because AprioriHybrid is harder to parallelize; the

performance of AprioriHybrid is sensitive to heuristically determined parameters. Furthermore, by

counting candidates of multiple sizes in one pass, the performance of Apriori can be made to approx-

imate that of AprioriHybrid. The algorithm in [14] is quite similar to Apriori and our parallelization

1In our earlier papers [2] [4], itemsets with minimum support were called large itemsets. However, some readers
associated \large" with the number of items in the itemset, rather than its support. So we are switching the terminology
to frequent itemsets.
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k-itemset An itemset having k items.
Lk Set of frequent k-itemsets (those with minimum support).

Each member of this set has two �elds: i) itemset and ii) support count.
Ck Set of candidate k-itemsets (potentially frequent itemsets).

Each member of this set has two �elds: i) itemset and ii) support count.
P i Processor with id i

Di The dataset local to the processor P i

DRi The dataset local to the processor P i after repartitioning
Ci

k
The candidate set maintained with the Processor P i during the
kth pass (there are k items in each candidate)

Figure 1: Notation

L1 := ffrequent 1-itemsetsg;
k := 2; // k represents the pass number
while ( Lk�1 6= ; ) do
begin

Ck := New candidates of size k generated from Lk�1;
forall transactions t 2 D do

Increment the count of all candidates in Ck that are contained in t;
Lk := All candidates in Ck with minimum support;
k := k + 1;

end

Answer :=
S

k
Lk;

Figure 2: Apriori Algorithm

techniques directly apply to this algorithm as well. The algorithm in [18] does not perform as well as

Apriori on large datasets with a large number of items. The algorithm in [17] attempts to improve the

performance of Apriori by using a hash �lter. However, as we will see in Section 4.3, this optimization

actually slows down the Apriori algorithm.

2.2. Apriori Algorithm

Figure 2 gives an overview of the Apriori algorithm, using the notation given in Figure 1. The

�rst pass of the algorithm simply counts item occurrences to determine the frequent 1-itemsets. A

subsequent pass, say pass k, consists of two phases. First, the frequent itemsets Lk�1 found in the

(k�1)th pass are used to generate the candidate itemsets Ck, using the apriori candidate generation

procedure described below. Next, the database is scanned and the support of candidates in Ck is

counted. For fast counting, we need to e�ciently determine the candidates in Ck contained in a given

transaction t. A hash-tree data structure [4] is used for this purpose.

Candidate Generation. Given Lk�1, the set of all frequent (k�1)-itemsets, we want to generate

a superset of the set of all frequent k-itemsets. The intuition behind the apriori candidate generation

procedure is that if an itemset X has minimum support, so do all subsets of X . For simplicity, assume
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the items in each itemset are in lexicographic order.

Candidate generation takes two steps. First, in the join step, join Lk�1 with Lk�1:

insert into Ck

select p.item1, p.item2, ..., p.itemk�1, q.itemk�1

from Lk�1 p, Lk�1 q

where p.item1 = q.item1, : : :, p.itemk�2 = q.itemk�2, p.itemk�1 < q.itemk�1;

Next, in the prune step, delete all itemsets c 2 Ck such that some (k�1)-subset of c is not in Lk�1.

For example, let L3 be ff1 2 3g, f1 2 4g, f1 3 4g, f1 3 5g, f2 3 4gg. After the join step, C4 will

be ff1 2 3 4g, f1 3 4 5g g. The prune step will delete the itemset f1 3 4 5g because the itemset f1 4

5g is not in L3. We will then be left with only f1 2 3 4g in C4.

3. Parallel Algorithms

We �rst present three parallel algorithms for the �rst subproblem | the problem of �nding all

frequent itemsets. We then give a parallel algorithm for the second subproblem | the problem of

generating rules from frequent itemsets. Refer to Figure 1 for a summary of notation used in the

algorithm descriptions. We use superscripts to indicate processor id and subscripts to indicate the

pass number (also the size of the itemset).

The algorithms assume a shared-nothing architecture, where each of N processors has a private

memory and a private disk. The processors are connected by a communication network and can

communicate only by passing messages. The communication primitives used by our algorithms are

part of the MPI (Message Passing Interface) communication library supported on the SP2 and are

candidates for a message-passing communication standard currently under discussion [9]. Data is

evenly distributed on the disks attached to the processors, i.e. each processor's disk has roughly an

equal number of transactions. We do not require transactions to be placed on the disks in any special

way.

3.1. Algorithm 1: Count Distribution

This algorithm uses a simple principle of allowing \redundant computations in parallel on other-

wise idle processors to avoid communication". The �rst pass is special. For all other passes k > 1,

the algorithm works as follows:

1. Each processor P i generates the complete Ck , using the complete frequent itemset Lk�1 created

at the end of pass k� 1. Observe that since each processor has the identical Lk�1, they will be

generating identical Ck .
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2. Processor P i makes a pass over its data partition Di and develops local support counts for

candidates in Ck.

3. Processor P i exchanges local Ck counts with all other processors to develop global Ck counts.

Processors are forced to synchronize in this step.

4. Each processor P i now computes Lk from Ck .

5. Each processor P i independently makes the decision to terminate or continue to the next pass.

The decision will be identical as the processors all have identical Lk.

In the �rst pass, each processor P i dynamically generates its local candidate itemset Ci
1 depending

on the items actually present in its local data partition Di. Hence, the candidates counted by di�erent

processors may not be identical and care must be taken in exchanging the local counts to determine

global C1.

Thus, in every pass, processors can scan the local data asynchronously in parallel. However, they

must synchronize at the end of each pass to develop global counts.

Performance Considerations. Steps 1-2 and 4-5 are similar to that of the serial algorithm. The

non-obvious step is how processors exchange local counts to arrive at global Ck counts. We give

details of how we implement this step e�ciently, separately for passes k > 1 and pass 1.

Pass k > 1:. Recall that the candidates are kept in a hash-tree to allow e�cient counting when

making a pass over the data (Section 2.2). To exchange local counts, each processor P i asynchronously

extracts its local counts for Ck into a count array LCntArr. Note that since Ck is identical for all

processors, if every processor traverses Ck in exactly the same order, corresponding elements of the

count arrays will correspond to identical candidate itemsets. We thus do not have to communicate

itemsets themselves but only their counts. We also save on computation because we can sum these

local counts using simple vector summation rather than having to compare and match candidates.

Having created LCntArr, processors now do ReduceScatter() communication to perform a par-

titioned vector-sum of the count arrays. Figure 3 shows the ReduceScatter() operation pictorially.

As the result of this operation, processor P i receives in the PartGCntArr receive bu�er the global

counts of all the items in the ith LCntArr partition of all the processors. The number of items in

each partition, PartSize, will be sizeof(LCntArr)/N .

ReduceScatter(SendBuf=LCntArr, ReceiveBuf=PartGCntArr,

BlockLen=PartSize, ReductionFunction=add)
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Figure 3: ReduceScatter and AllGather Communication

Each processor now gathers into GCntArr the global counts of items belonging to all other

PartGCntArr partitions by calling

AllGather(SendBuf=PartGCntArr, ReceiveBuf=GCntArr, BlockLen=PartSize)

thus giving each processor the global counts for all candidates in Ck . Figure 3 shows the AllGather()

operation pictorially.

Pass 1:. Each processor P i makes a pass over its data partition Di reading one tuple at a time and

builds Ci
1, which is maintained in a closed hash-table. For each tuple, every item is hashed and its

corresponding count in the hash table incremented; new entries are created if necessary.

At the end of the pass, processor P i loads items and their counts from the hash table into a send

bu�er ItemsOfProcI and then gathers items and their support counts from all other processors. To

do this, it must �rst gather the count of the total number of items residing in the send bu�ers of all

other processors. Processor P i puts the count of its own items in a CountBuf and calls

AllGather(SendBuf=CountBuf, ReceiveBuf=CountArr, BlockLen=sizeof(integer))

The jth element of the CountArr now contains the number of items processor j has in its send

bu�er.
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Next, processor P i calls AllGatherV()2 to collect all items and their counts into the receive bu�er

AllItems3:

AllGatherV(SendBuf=ItemsOfProcI, ReceiveBuf=AllItems,

BlockLen=sizeof(ItemsOfProcI), ReceiveBlockLen= CountArr)

P i now hashes items from the receive bu�er into a new hash table. If the same item was counted

by more than one processor, it will hash to the same bucket and the support count for this item is

accumulated. Thus, P i now has the entire candidate set C1, complete with global counts.

3.2. Algorithm 2: Data Distribution

The attractive feature of the Count distribution algorithm is that no data tuples are exchanged

between processors | only counts are exchanged. Thus, processors can operate independently and

asynchronously while reading the data. However, the disadvantage is that this algorithm does not

exploit the aggregate memory of the system e�ectively. Suppose that each processor has memory of

size jM j. The number of candidates that can be counted in one pass is determined by jM j. As we

increase the number of processors from 1 to N , the system has N � jM j total memory, but we still

count the same number of candidates in one pass, as each processor is counting identical candidates.

The Data distribution algorithm is designed to exploit better the total system's memory as the

number of processors is increased. In this algorithm, each processor counts mutually exclusive candi-

dates. Thus, as the number of processors is increased, a larger number of candidates can be counted

in a pass. The downside of this algorithm is that every processor must broadcast its local data to all

other processors in every pass. Therefore, this algorithm can become viable only on a machine with

very fast communication.

Pass 1:. Same as the Count distribution algorithm.

Pass k > 1:.

1. Processor P i generates Ck from Lk�1. It retains only 1=Nth of the itemsets forming the can-

didates subset Ci
k that it will count. Which 1=N itemsets are retained is determined by the

processor id and can be computed without communicating with other processors. In our imple-

mentation, itemsets are assigned in a round-robin fashion. The Ci
k sets are all disjoint and the

union of all Ci
k sets is the original Ck .

2
AllGatherV() is the variable length counterpart of AllGather() in which a processor receives messages of di�erent

sizes from other processors. SendBuf is of size BlockLen, ReceiveBuf is an array of N messages, and the size of the ith
receive bu�er is given by the ith element of the ReceiveBlockLen array.

3If AllItems array becomes too large, we have an intermediate step using ReduceScatter() to reduce the number
of duplicate entries. We omit this detail for brevity.
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2. Processor P i develops support counts for the itemsets in its local candidate set Ci
k using both

local data pages and data pages received from other processors.

3. At the end of the pass over the data, each processor P i calculates Li
k using the local C

i
k . Again,

all Li
k sets are disjoint and the union of all Li

k sets is Lk.

4. Processors exchange Li
k so that every processor has the complete Lk for generating Ck+1 for

the next pass. This step requires processors to synchronize. Having obtained the complete Lk,

each processor can independently (but identically) decide whether to terminate or continue on

to the next pass.

Performance Considerations. Steps 1 and 3 are straightforward. Step 4 for exchanging Li
k

is similar to the step 3 for exchanging Ci
1 described with the �rst pass of the Count distribution

algorithm, except that each Li
k is disjoint and counts do not need to be summed. Each processor P i

loads Li
k into a communication bu�er, uses AllGatherV() to share Li

k with everyone else and ends

up with the complete Lk .

The interesting step is Step 2 in which processors develop support counts for local candidates Ci
k

asynchronously. Processor P i develops counts for candidates in Ci
k by alternating between data pages

received from other processors in the receive bu�ers RBufj and tuples in its local data partition Di.

First, processor P i uses N � 1

AsynchReceive(ReceiveBuf=RBufj, BufSize=PAGESIZE, Sender=DONTCARE)

to post N � 1 asynchronous receive bu�ers for receiving a page worth of data from any processor

(indicated by specifying DONTCARE for the Sender).

P i gives priority to processing a page in a receive bu�er over a local tuple to avoid network

congestion. Once P i starts processing a receive bu�er, it processes all the tuples in it. It then reposts

the bu�er using AsynchReceive() unless the receive bu�er contains the end-of-transmission (EOT)


ag. An EOT 
ag indicates that the sender has no more data to transmit.

If no data page is available in any of the receive bu�ers, P i processes a local tuple from its partition

Di. After processing a local tuple, P i adds it to a send bu�er SBuf. After Di has been completely

processed, P i adds an EOT 
ag to SBuf. If SBuf becomes full or an EOT 
ag has been added to it, P i

broadcasts SBuf to all other processors using N � 1 AsynchSend() calls (The MPI communication

library does not support asynchronous multisend).

3.3. Algorithm 3: Candidate Distribution

Both Count and Data distribution algorithms require processors to synchronize at the end of a

pass to exchange counts or frequent itemsets respectively. If the workload is not perfectly balanced,
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this can cause all the processors to wait for whichever processor �nishes last in every pass. The

Candidate distribution algorithm attempts to do away with the dependence between processors so

that they may proceed independently without synchronizing at the end of every pass.

In some pass l, where l is heuristically determined, this algorithm divides the frequent itemsets Ll�1

between processors in such a way that a processor P i can generate a unique Ci
m (m � l) independent

of all other processors (Ci
m \ Cj

m = ;; i 6= j). At the same time, data is selectively replicated so

that a processor can count candidates in Ci
m independent of all other processors. The choice of

the redistribution pass is a tradeo� between decoupling processor dependence as soon as possible and

waiting until the itemsets become more easily and equitably partitionable. The partitioning algorithm

exploits the semantics of the Apriori candidate generation procedure described in Section 2.2.

After this candidate distribution, the only dependence that a processor has on other processors

is for pruning the local candidate set during the prune step of candidate generation. However, a

processor does not wait for the complete pruning information to arrive from all other processors.

During the prune step of candidate generation, it prunes the candidate set as much as possible using

whatever information has arrived, and opportunistically starts counting the candidates. The late

arriving pruning information can be used in subsequent passes. The algorithm is described below.

Pass k < l:. Use either Count or Data distribution algorithm.

Pass k = l:.

1. Partition Lk�1 among the N processors such that Lk�1 sets are \well balanced". We discuss

below how this partitioning is done. Record with each frequent itemset in Lk�1 which processor

has been assigned this itemset. This partitioning is identically done in parallel by each processor.

2. Processor P i generates Ci
k , logically using only the Lk�1 partition assigned to it. Note that P i

still has access to the complete Lk�1, and hence can use standard pruning while generating Ci
k

in this pass.

3. P i develops global counts for candidates in Ci
k and the database is repartitioned into DRi at

the same time. The details of this step are given below.

4. After P i has processed all its local data and any data received from all other processors, it posts

N�1 asynchronous receive bu�ers to receive Lj
k from all other processors. These Lj

k are needed

for pruning Ci
k+1 in the prune step of candidate generation.

5. Processor P i computes Li
k from Ci

k and asynchronously broadcasts it to the other N � 1 pro-

cessors using N � 1 asynchronous sends.
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Pass k > l:.

1. Processor P i collects all frequent itemsets that have been sent to it by other processors. They

are used in the pruning step of the candidate generation, but not the join step. Itemsets received

from processor j could be of length k� 1, smaller than k� 1 (slower processor), or greater than

k � 1 (faster processor). P i keeps track for each processor P j the largest size of the frequent

itemsets sent by it. Receive bu�ers for the frequent itemsets are reposted after processing.

2. P i generates Ci
k using the local Li

k�1. Now it can happen that P i has not received Lj
k�1 from

all other processors, so P i needs to be careful at the time of pruning. It needs to distinguish an

itemset (a k � 1 long subset of a candidate itemset) which is not present in any of Lj
k�1 from

an itemset that is present in some L
j

k�1 but this set has not yet been received by processor P i.

It does so by probing Ll�1 (remember that repartitioning took place in pass l) using the l � 1

long pre�x of the itemset in question, �nding the processor responsible for it, and checking if

Lj
k�1 has been received from this processor.

3. P i makes a pass over DRi and counts Ci
k . It then computes Li

k from Ci
k and asynchronously

broadcasts Li
k to every other processor using N � 1 asynchronous sends.

Performance Considerations. A performance sensitive step in the above algorithm is how to do

data repartitioning e�ciently (Step 3 of pass k = l). We give next the details of how the processors

develop global counts of candidates assigned to them and at the same time do data repartitioning.

As in the Data distribution algorithm, each processor P i uses N � 1 AsynchReceive() to post

N�1 asynchronous receive bu�ers for receiving a page worth of data from any processor. Processor P i

develops counts for candidates in Ci
k by alternating between data pages received from other processors

in the receive bu�ers RBufj and tuples in its local data partition Di. P i gives priority to processing

a page in a receive bu�er over a local tuple to avoid network congestion. Once P i starts processing a

page in a receive bu�er, it processes all the tuples in it and then reposts it using AsynchReceive unless

the receive bu�er contains the end-of-transmission (EOT) 
ag. However, unlike Data distribution, P i

allocates N � 1 send bu�ers for sending tuples to speci�c processors as discussed below.

If no data page is available in any of the receive bu�ers, P i processes a local tuple in its partition

Di. It �rst probes Lk�1 to see which processors can use this tuple by �nding the processors assigned

to the frequent itemsets of size k� 1 contained in this tuple. It writes the tuple into the send bu�ers

of the corresponding processors. If P i itself is one of the processors interested in this tuple, it uses the

tuple to increment counts in Ci
k . After D

i has been completely processed, P i adds an EOT 
ag to all

the send bu�ers. If a send bu�er becomes full or an EOT 
ag has been added to it, P i asynchronously

sends this bu�er to the corresponding processor.
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When processing a tuple from a receive bu�er, P i increments the counts in Ci
k . It then writes this

tuple to a local �le DRi, discarding any item in the tuple that did not contribute to the counting.

Local tuples used to count Ci
k are also written in this manner to DRi. P i uses this repartitioned DRi

in future passes to count the support for candidates.

Partitioning Lk. We motivate the algorithm for partitioning Lk by an example. Let L3 be fABC,

ABD, ABE, ACD, ACE, BCD, BCE, BDE, CDEg. Then L4 = fABCD, ABCE, ABDE,

ACDE, BCDEg, L5 = fABCDEg, and L6 = ;. Consider E = fABC, ABD, ABEg whose members

all have the common pre�x AB. Note that the candidates ABCD, ABCE, ABDE and ABCDE

also have the pre�x AB. The apriori candidate generation procedure (Section 2.2) generates these

candidates by joining only the items in E .

Therefore, assuming that the items in the itemsets are lexicographically ordered, we can partition

the itemsets in Lk based on common k� 1 long pre�xes. By ensuring that no partition is assigned to

more than one processor, we have ensured that each processor can generate candidates independently

(ignoring the prune step). Suppose we also repartition the database in such a way that any tuple

that supports an itemset contained in any of the Lk partitions assigned to a processor is copied to

the local disk of that processor. The processors can then proceed completely asynchronously.

The actual algorithm is more involved because of two reasons. A processor may have to obtain

frequent itemsets computed by other processors for the prune step of the candidate generation. In

the example above, the processor assigned the set E has to know whether BCDE is frequent to be

able to decide whether to prune the candidate ABCDE, but the set with pre�x BC may have been

assigned to a di�erent processor. The other problem is that we need to balance load across processors.

Details of the full partitioning algorithm are given in Appendix A4.

3.4. Parallel Rule Generation

We now present our parallel implementation of the second subproblem { the problem of generating

rules from frequent itemsets. Generating rules is much less expensive than discovering frequent

itemsets as it does not require examination of the data.

Given a frequent itemset l, rule generation examines each non-empty subset a and generates the

rule a) (l�a) with support = support(l) and con�dence = support(l)=support(a). This computation

can e�ciently be done by examining the largest subsets of l �rst and only proceeding to smaller subsets

if the generated rules have the required minimum con�dence [4]. For example, given a frequent itemset

ABCD, if the rule ABC ) D does not have minimum con�dence, neither will AB ) CD, and so

we need not consider it.

4The paper is self-contained without this appendix. Should space become a constraint, the conference version of the
paper will not include the appendix, but will refer to an IBM Research Report.
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Generating rules in parallel simply involves partitioning the set of all frequent itemsets among

the processors. Each processor then generates rules for its partition only using the algorithm above.

Since the number of rules that can be generated from an itemset is sensitive to the itemset's size, we

attempt equitable balancing by partitioning the itemsets of each length equally across the processors.

Note that in the calculation of the con�dence of a rule, a processor may need to examine the

support of an itemset for which it is not responsible. For this reason, each processor must have access

to all the frequent itemsets before rule generation can begin. This is not a problem for the Count

and Data distribution algorithms because at the end of the last pass, all the processors have all the

frequent itemsets. In the Candidate distribution algorithm, fast processors may need to wait until

slower processors have discovered and transmitted all of their frequent itemsets. For this reason and

because the rule generation step is relatively cheap, it may be better in the Candidate distribution

algorithm to simply discover the frequent itemsets and generate the rules o�-line, possibly on a serial

processor. This would allow processors to be freed to run other jobs as soon as they are done �nding

frequent itemsets, even while other processors in the system are still working.

4. Performance Evaluation

We ran all of our experiments on a 32-node IBM SP2Model 302. Each node in the multiprocessor is

a Thin Node 2 consisting of a POWER2 processor running at 66.7MHz with 256MB of real memory.

Attached to each node is a 2GB disk of which less than 500MB was available for our tests. The

processors all run AIX level 3.2.5 and communicate with each other through the High-Performance

Switch with HPS-2 adaptors. The combined communication hardware has a rated peak bandwidth

of 80 megabytes per second and a latency of less than 40 microseconds. In our own tests of the base

communication routines, actual point-to-point bandwidth reached 20MB/s. Experiments were run

on an otherwise idle system. See [13] for further details of the SP2 architecture.

Name T I D1 D16 D32

D3278K.T5.I2 5 2 3278K 52448K 104896K
D2016K.T10.I2 10 2 2016K 32256K 64512K
D2016K.T10.I4 10 4 2016K 32256K 64512K
D1456K.T15.I4 15 4 1456K 23296K 46592K
D1140K.T20.I4 20 4 1140K 18240K 36480K
D1140K.T20.I6 20 6 1140K 18240K 36480K

T Average transaction length
I Average size of frequent itemsets
D Average number of transactions

Table 1: Data Parameters

We used synthetic datasets of varying complexity, generated using the procedure described in

[4]. The characteristics of the six datasets we used are shown in Table 1. These datasets vary from

many short transactions with few frequent itemsets, to fewer larger transactions with many frequent

itemsets. All the datasets were about 100MB per processor in size. We could not use larger datasets
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Figure 4: Relative Performance of the Algorithms

due to constraints on the amount of storage available on local disks; the Candidate algorithm writes

the redistributed database on local disks after candidate partitioning, and we run out of disk space

with the larger datasets. However, we include results of sizeup experiments (up to 400 MB per

processor) for the Count distribution algorithm to show the trends for larger amounts of data per

processor. Experiments were repeated multiple times to obtain stable values for each data point.

4.1. Relative Performance and Trade-o�s

Figure 4 shows the response times for the three parallel algorithms on the six datasets on a 16 node

con�guration with a total database size of approximately 1.6GB. The response time was measured as

the time elapsed from the initiation of the execution to the end time of the last processor �nishing

the computation. The response times for the serial version are for the run against only one node's

worth of data or 1=16th of the total database. We did not run the serial algorithm against the entire

data because we did not have enough disk space available. We obtained similar results for other node

con�gurations and dataset sizes. In the experiments with Candidate distribution, repartitioning was

done during the fourth pass. In our tests, this choice yielded the best performance.

The results are very encouraging; for both Count and Candidate distribution algorithms, response

times are close to that of the serial algorithm; this is especially true for Count. The overhead for

Count is less than 7.5% when compared to the serial version run with 1/N data. Of that 7.5%

overhead, about 2.5% was spent waiting for other processors to synchronize.

Among the parallel algorithms, Data distribution did not fare as well as the other two. As we

had expected, Data was indeed able to better exploit the aggregate memory of the multiprocessor

and make fewer passes in the case of datasets with large average transaction and frequent itemset

lengths (see Table 2). However, its performance turned out to be markedly lower for two reasons:

extra communication and the fact that every node in the system must process every single database
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Name Serial Count Data Candidate

D3278K.T5.I2 7 7 7 7
D2016K.T10.I2 7 7 7 7
D2016K.T10.I4 11 11 11 11
D1456K.T15.I4 13 13 11 13
D1140K.T20.I4 21 21 11 21
D1140K.T20.I6 23 23 14 23

Table 2: Number of Data Passes Required
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Figure 5: Communication Costs for Data Distribution

transaction. Communication is the worst of these two problems as show by Figure 5, even on a

machine such as SP2 with very fast communication. The points labeled \Normal" correspond to the

response times for the normal Data distribution algorithm on a 16-node con�guration, but with the

same 100MB of data replicated on each node. The points labeled \No Communication" correspond

to a modi�ed version of the Data distribution algorithm where, instead of receiving data from other

nodes, a node simply processed its local data 15 more times. Since each node had the exact same data,

this yielded the exact same results with the only di�erence being no time was spent on communication

or its management. We did this for three of the six datasets and discovered that fully half of the time

taken by Data distribution was for communication.

We had hoped for better results from the Candidate distribution algorithm, considering that it

is the one that exploits the problem-speci�c semantics. Since the Candidate algorithm must also

communicate the entire dataset during the redistribution pass, it su�ers from the same problems as

Data. Candidate, however, only performs this redistribution once. Also, unlike Data, processors may

selectively �lter out transactions it sends to other processors depending upon how the dependency

graph is partitioned. This can greatly reduce the amount of data traveling through the network.

Unfortunately, even a single pass of �ltered data redistribution is costly. The question is whether

or not the subsequent passes where each processor can run independently without synchronizing can

compensate for this cost. As the performance results show, redistribution simply costs too much
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relative to the cost of synchronization, making Count the winner.

Synchronization costs can become quite large if the data distributions are skewed or the nodes

are not equally capable (di�erent memory sizes, processor speeds, I/O bandwidths and capacities).

Investigation of these issues is a broad topic and it is in our future plans. However, one can think

of several alternatives for adding load balancing to the Count distribution algorithm that do not

require redistribution of the complete database as in the case of the Candidate distribution algorithm.

Extrapolating from the results of this study, our sense is that the Count distribution algorithm

embellished with an appropriate load balancing strategy is likely to continue to dominate.

4.2. Sensitivity Analysis

We examine below the scaleup, sizeup, and speedup characteristics of the Count distribution

algorithm. We do not report further the results of the Data and Candidate distribution algorithms

because of their inferior performance.

Scaleup. To see how well the Count distribution algorithm handles larger problem sets when more

processors are available, we performed scaleup experiments where we increased the size of the database

in direct proportion to the number of nodes in the system. We used the datasets D2016K:T10:I2,

D1456K:T15:I4 and D1140K:T20:I6 from the previous experiments except that the number of trans-

actions was increased or decreased depending upon the multiprocessor size. The database sizes for

the single and 32 node con�gurations are shown in Table 1. At 100MB per node, all three datasets

range from about 100MB in the single node case to almost 3.2GB in the 32 node case.

Figure 6 shows the performance results for the three datasets. In addition to the absolute response

times as the number of processors is increased, we have also plotted scaleup which is the response time

normalized with respect to the response time for a single processor. Clearly the Count algorithm scales

very well, being able to keep the response time almost constant as the database and multiprocessor

sizes increase. Slight increases in response times is due entirely to more processors being involved in

communication. Since the itemsets found by the algorithm does not change as the database size is

increased, the number of candidates whose support must be summed by the communication phase

remains constant.

Sizeup. For these experiments, we �xed the size of the multiprocessor at 16 nodes while growing

the database from 25 MB per node to 400 MB per node. We have plotted both the response times

and sizeup in Figure 6. The sizeup is the response time normalized with respect to the response time

for 25MB per node. The results show sublinear performance for the Count algorithm; the program

is actually more e�cient as the database size is increased. Since the results do not change as the

database size increases neither does the amount or cost of communication. Increasing the size of the
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Figure 6: Performance of Count Distribution
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database simply makes the non-communication portion of the code take more time due to more I/O

and more transaction processing. This has the result of reducing the percentage of the overall time

spent in communication. Since I/O and CPU processing scale perfectly with sizeup, we get sublinear

performance.

Speedup. For our last set of experiments, we kept the database constant and varied the number of

processors. Because of the constraint on available disk space, the size of each of the three databases

was �xed at 400MB. Figure 6 shows the results of running the Count algorithm on con�gurations of

up to 16 processors. We did not run with larger con�gurations because the amount of data at each

node becomes too small. The speedup in this �gure is the response time normalized with respect

to the response time for a single processor. As the graphs show, Count has very good speedup

performance. This performance does however begin to fall short of ideal at 8 processors. This is an

artifact of the small amount of data each node processing. At only 25MB per node, communication

times become a signi�cant percentage of the overall response time. This is easily predicted from our

sizeup experiments where we noticed that the more data a node processes, the less signi�cant becomes

the communication time giving us better performance. We are simply seeing the opposite e�ect here.

Larger datasets would have shown even better speedup characteristics.

4.3. E�ect of Hash Filtering

Recently, Park, Chen, and Yu [17] proposed the use of a hash �lter to reduce the cost of Apriori,

particularly in the second pass by reducing the size of C2. The basic idea is to build a hash �lter as

the tuples are read in the �rst pass. For every 2-itemset present in a tuple, a count is incremented in

a corresponding hash bucket. Thus, at the end of the pass, we have an upperbound on the support

count for every 2-itemset present in the database. When generating C2 using L1, candidate itemsets

are hashed, and any candidate whose support count in the hash table is less than the minimum

support is deleted.

Figure 7 compares the combined response times for Pass 1 and 2 for the Count algorithm and

this Hash Filter algorithm. The times for the remaining passes are identical. The Count algorithm

beats Hash Filter because Count never explicitly forms C2; rather, it uses a specialized version of the

hash-tree as was done in [4]. Since nothing in C2 can be pruned by the Apriori algorithm, it is equal

to L1�L1. C2 can thus be represented by a simple two-dimensional count array, drastically reducing

memory requirements and function call overhead. Any savings from using the hash �lter to prune C2

are lost due to the cost of constructing the hash �lter and the use a regular hash-tree for storing and

counting C2.
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Figure 7: E�ect of Hash Filtering

5. Conclusions

We considered the problem of mining association rules on a shared-nothing multiprocessor on

which data has been partitioned across the nodes. We presented three parallel algorithms for this

task. These algorithms represent a spectrum of trade-o�s between computation, communication,

memory usage, synchronization, and the use of problem-speci�c information.

The Count distribution algorithm was designed to minimize communication. No data tuples are

exchanged between processors | only counts are exchanged. Processors can operate independently

and asynchronously during the pass over the data, but need synchronization at the end of every pass.

The Data distribution algorithm was designed to exploit the aggregate memory of the system

more e�ectively. In this algorithm, each processor counts mutually exclusive candidates. Thus, as

the number of processors increases, a larger number of candidates can be counted in a pass. It can

be e�ective if there are more candidates than what can �t in memory, forcing a pass into multiple

subpasses when using the Count algorithm. The downside is that every processor must broadcast its

local data to all other processors in every pass, making this algorithm viable only on a machine with

very fast communication. Also, processors are still required to synchronize at the end of every pass

in order to exchange frequent itemsets.

The Candidate distribution algorithm attempts to do away with the dependence between pro-

cessors so that they may proceed independently without synchronizing. It tries to repartition the

computation between processors in such a way that each processor can generate its set of candidates

independent of all other processors. At the same time, the database is selectively replicated so that a

processor can develop support counts for its candidates independent of all other processors. Thus, af-

ter repartitioning, each processor can proceed asynchronously. The Candidate distribution algorithm

is the one that uses problem-speci�c semantics in its design.

We studied the above trade-o�s and evaluated the relative performance of the three algorithms
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by implementing them on 32-node SP2 parallel machine. The Count distribution emerged as the

algorithm of choice. It exhibited linear scaleup and excellent speedup and sizeup behavior. When

using N processors, the overhead was less than 7.5% compared to the response time of the serial

algorithm executing over 1/N amount of data. The Data distribution algorithm lost out because

of the cost of broadcasting local data from each processor to every other processor. The Candidate

distribution algorithm did not win because the cost of data redistribution swamped the gains from

not having to synchronize at the end of each pass.

Although we focussed on parallelizing the mining of association rules, the results and experience

from this study have wider applicability. The implementation techniques we described for exchanging

counts, distributing and repartitioning data, and redundant computations to save communications

can be directly used in the design of parallel algorithms for other data mining tasks. E�cient counting

is at the heart of several data mining algorithms [1]. Extrapolating from the results of this study, it

is safe to conclude that one should focus (at least initially) on designs based on distributing counts

for parallelizing these algorithms. Indeed that is how we are proceeding in parallelizing mining

for multi-level association rules [10] [19], and sequential patterns [5]. Finally, we found the MPI

(Message Passing Interface) communication primitives to be very powerful and convenient, and they

simpli�ed our code structure considerably. These primatives are part of a proposed message-passing

communication standard [9], and they merit serious consideration in the design of parallel mining

algorithms.
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A. Partitioning Algorithm

We discuss in this appendix how the Candidate distribution algorithm partitions Lk . The parti-

tioning strives to achieve the dual objective of allowing every processor to proceed as independently

as possible and at the same time balancing the load on each of the processors.

Lemma 1. Assuming that the items in the itemsets are lexicographically ordered, let E be a set of

frequent itemsets in Lk that have the same k� 1 long pre�x (i.e., the �rst k� 1 items are the same).

Let this pre�x be lk�1. Any candidate itemset cm (m > k) that has lk�1 as the pre�x is generated by

the Apriori candidate generation procedure by recursively joining itemsets only in E and the results

thereof.

PROOF. Immediate from the join step of the Apriori candidate generation procedure. 2

Example. Let L3 be fABC, ABD, ABE, ACD, ACE, BCD, BCE, BDE, CDEg. Then L4 =

fABCD, ABCE, ABDE, ACDE, BCDEg, L5 = fABCDEg, and L6 = ;. Consider E = fABC,

ABD, ABEg whose members all have the common pre�x AB. The candidates ABCD, ABCE,

ABDE and ABCDE that also have the pre�x AB are generated by joining only the items in E . 2

Therefore, we can partition the itemsets in Lk based on common k� 1 long pre�xes. By ensuring

that no partition is assigned to more than one processor, we have ensured that each processor can

generate candidates independently (ignoring the prune step). Suppose we repartition the database

in such a way that any tuple that has any item contained in any of the Lk partitions assigned to a

processor is also copied to the local disk of that processor. The processors then can proceed completely

asynchronously.

This simple approach has two problems. A processor may have to obtain frequent itemsets com-

puted by other processors for the prune step of the candidate generation. In the example above, the

processor assigned the set E has to know whether BCDE is frequent to be able to decide whether to

prune the set ABCDE, but the set with pre�x BC may have been assigned to a di�erent processor.

The other problem is that we need to balance load across processors.

Lemma 2. Let lk be a frequent itemset in Lk. Consider a candidate itemset cm (m > k), which is

an extension of lk. Let S be the set of all itemsets of size k � 1 in lk. To determine if cm should be

pruned, we need to consider only the frequent itemsets that are extensions of the itemsets in S.

PROOF. To decide on the pruning of cm, we need to make sure that every subset of size m� 1 in cm

is frequent. Every such itemset is an extension of one of the k � 1 length subsets of lk, and all these

itemsets are in S. 2
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Figure 8: Example Dependency Graph

Example. Let lk be fABCg and cm be fABCDEFg. Then S = fAB;AC;BCg and all m � 1

subsets of cm are extensions of itemsets in S. 2

Dependency Graph. Lemma 2 leads to the algorithm for constructing the dependency graph G

that is used for candidate partitioning. This graph is created in pass k after computing Lk . There is

a node in this graph for each itemset in S for all lk in Lk .

Let n be the node corresponding to k� 1 long pre�x of lk. If a k� 1 long pre�x is such that it has

only one k long extension in Lk , then no node is created for this itemset because it cannot generate

any k + 1 long candidate. From n, we draw an arc to the nodes corresponding to all other k � 1

long itemsets in S. This is done for each lk in Lk that is an extension of the itemset corresponding

to n. An arc from node n to node m represents that in order to decide the pruning of a candidate

generated by extending the itemset corresponding to n, we need to consider extensions of the itemset

corresponding to m (From Lemma 2).

Example. Consider the sets L2 and L3 given in Figure 8. We are interested in partitioning L3.

Consider ABC. The set S for ABC consists of fAB;AC;BCg. We create a node for AB and draw an

arc from AB to AC and BC. Now consider ACM . The set S for ACM consists of fAC;AM;CMg.

But no out-going arc is created from AC because there is no node corresponding to AM or CM as

they do no have more than one extension in L3. Similarly, for other itemsets in L3. 2

If load balancing was not a consideration, we could have assigned connected components of G to

separate processors in a round-robin fashion and then each processor could have proceeded indepen-

dently. To balance the load, every node n of G is assigned the weight:

weight(n) =
P

lk
support(lk)
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where each lk is an extension of the k� 1 long itemset corresponding to the node n. The weight of n

is an estimate of the total number of transactions that will reside on the processor assigned this node

after data repartitioning. It is a rough estimate since there is surely overlap in the sets of transactions

that support each itemset. The weights are also an indicator of how many passes extensions of the

itemsets will last; generally, the higher the support of an itemset, the more likely it is a subset of a

much longer itemset.

An arc from node n to m is assigned the weight:

weight(n;m) = support(itemset(n) \ itemset(m)) / weight(m).

Arc weights attempt to balance two concerns: data replication and useful pruning information. Since

we would like to avoid replicating transactions onto more than one processor, we want to keep nodes

that have many items in common together on the same processor. The numerator is a rough estimate

of the number of transactions nodes n and m have in common and would have to be replicated if

assigned to separate processors. The more transactions the nodes have in common, the more we

would like to keep these two nodes on the same processor. The denominator estimates the usefulness

of the information about node m in pruning future candidates of node n. If a subset of a candidate

is not frequent, we gain by not having to count that candidate. However, if that subset is assigned

to a di�erent and slower processor, we may not receive information about that subset until after we

have completed the prune step of the candidate generation. With no information available, we will

be forced to assume that the subset is frequent and we will not be able to prune the candidate. So,

if node n depends upon node m for future pruning, it would be best to assign the two nodes to the

same processor if the weight of node m is low; if the weight is low, itemsets belonging to node m will

probably not be extended much further before the are no longer frequent.

Partitioning. Nodes of the dependency graph are assigned to the processors in such a way that

each processor has roughly equal total node weight. Having assigned a node to a processor, nodes

connected with a higher weight arc are preferred for assigning to the same processor.

Let W =
P

n weight(n) where n is a node in G. Allocate a "bin" for each processor (e�ectively a

set for holding itemsets). The weight each bin can hold is W=N , where N is the number of processors.

Find connected components of G. Calculate the total node weight of each component and sort

them in order of decreasing weight.

Consider each connected component in decreasing order of weight and do the following for each

component: Find the least loaded bin. If this bin can hold this component, assign it to the bin.

Otherwise, assign the heaviest node of this component to the bin. Now, recursively �nd the heaviest

edge from an assigned node to a non-assigned node, and assign the latter to the bin. This process

stops when the bin is full. The remaining nodes of the original component now comprise one or more
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smaller components. These are reinserted into the sorted list of unassigned components. This is

repeated until no unassigned components remain.
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