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ABSTRACT
Numerous widely publicized cases of theft and misuse of pri-
vate information underscore the need for audit technology to
identify the sources of unauthorized disclosure. We present
an auditing methodology that ranks potential disclosure
sources according to their proximity to the leaked records.
Given a sensitive table that contains the disclosed data, our
methodology prioritizes by relevance the past queries to the
database that could have potentially been used to produce
the sensitive table. We provide three conceptually differ-
ent measures of proximity between the sensitive table and a
query result. One measure is inspired by information re-
trieval in text processing, another is based on statistical
record linkage, and the third computes the derivation proba-
bility of the sensitive table in a tree-based generative model.
We also analyze the characteristics of the three measures and
the corresponding ranking algorithms.

Categories and Subject Descriptors: H.2.4 [Database
Management] : Systems

General Terms: Algorithms, Security

Keywords: Hippocratic database, privacy, information re-
trieval, record linkage, derivation probability

1. INTRODUCTION
As enterprises collect and maintain increasing amounts of

personal data, individuals are exposed to greater risks of
privacy breaches and identity theft. Many recent reports
of personal data theft and misappropriation highlight these
risks. As a result, many countries have enacted data protec-
tion laws requiring enterprises to account for the disclosure
of personal data they manage [3, 5, 8, 14]. Hence, modern
information systems must be able to track who has disclosed
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sensitive data and the circumstances of disclosure. For in-
stance, the U.S. President’s Information Technology Advi-
sory Committee in its report on healthcare recommends that
healthcare information systems must have the capability to
audit who has accessed patient records [24].

We assume there is a data table called sensitive table,
which is suspected to have originated from one or more
queries that were run against a given database. Informa-
tion on the past queries is available from a query log. Since
the number of queries can be very large, our goal is to rank
them so that the more likely sources of leakage can be ex-
amined by the auditor first.

We rank the queries based on the proximity of their results
with the sensitive table. We provide and compare three
methods of measuring proximity:

Partial Tuple Matching (PTM) This method measures
the proximity of a query result to the sensitive table
by considering common pieces of information (partial
tuple matches) between the tuples of the two tables,
while factoring in the rarity of a match at the same
time. This method is inspired by the TF-IDF (term
frequency - inverse document frequency) measure from
the information retrieval literature [28].

Statistical Tuple Linkage (STL) This method employs
statistical record matching techniques and mixture
model parameter estimation via expectation maxi-
mization to find the best one-to-one match between
the closest tuples in the two tables, and then evaluates
the overall proximity by aggregating the scores of in-
dividual matches. This proximity measure has roots
in the record linkage literature [6, 12, 30].

Derivation Probability Gain (DPG) This method, in-
spired by the minimum description length princi-
ple [25], evaluates proximity of the sensitive table to
the query result table by computing the gain in proba-
bility for the sensitive tuples through their maximum-
likelihood derivation from the query result table.

The following scenario illustrates a practical application
of the proposed auditing system. Sophie, who is the privacy
officer of Physicians Inc., comes across a promotion that in-
cludes a table of names of patients who have been treated
and benefited from a newly introduced HIV treatment. So-
phie becomes suspicious that this table might have been
extracted from queries run against her company’s database.
There are very many queries run everyday, but fortunately
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they are logged along with the timestamp and other infor-
mation such as who ran them. The database system also
versions previous state before updating any data item to
meet the need of reconstructing history as needed. Sophie
can use the techniques proposed in this paper to identify
and rank the queries that she should examine first for inves-
tigating this potential data leak.

1.1 Related Work
The problem of auditing a log of past queries and updates

by means of an audit query that represents the leaked data
has been studied in [1]. The suspicious queries are identified
by finding past queries in the log whose results depend on
the same “indispensable” data tuples as the audit query; a
tuple is considered indispensable for a query if its omission
makes the result of the query different. The indispensability
of a tuple bears resemblance to the notion of a critical tuple
in [21]. However, given some sensitive data, it is often dif-
ficult to formulate a concise audit query with near-perfect
recall and precision. Moreover, the tuples in the sensitive
table may have undergone a certain amount of arbitrary
perturbation. Finally, the number of suspicious queries pro-
duced can be very large, necessitating an ordering based on
relevance for an auditor’s investigation.

Database watermarking [2] has also been proposed to
track the disclosure of information. Database fingerprint-
ing [18] can additionally identify the source of a leak by
injecting different marks in different released copies of the
data. Both the techniques require data to be modified to
introduce a pattern and then recover the pattern in the sen-
sitive data to establish disclosure. These techniques depend
on the availability of a set of attributes that can withstand
alteration without significantly degrading their value. They
also require that a large portion of the pattern is carried
over in the sensitive data.

As has been pointed out in [1], Oracle [23] offers a “fine-
grained auditing” function where the administrator can
specify that read queries should be logged if they access
specified tables. This function logs various user context
data along with the query issued, the time it was issued,
and other system parameters such as the “system change
number”. Oracle also supports “flashback queries” whereby
the state of the database can be reverted to the state im-
plied by a given system change number. A logged query can
then be rerun as if the database was in that state to deter-
mine what data was revealed when the query was originally
run. However, there does not appear to be any automated
facility to determine which queries should be audited.

Paper layout. The remainder of the paper is organized
as follows. Section 2 gives the problem definition for ranking
queries for the purpose of auditing. Sections 3-5 present our
three methods for measuring proximity and ranking queries.
Section 6 contrasts the characteristics of each method. Sec-
tion 7 is an empirical study of the effectiveness of the pro-
posed methods. Section 8 offers some concluding remarks
and describes opportunities for future work.

2. AUDITING QUERY LOGS

2.1 Problem Definition and Notation
We are given a table S that contains sensitive data sus-

pected to have been misappropriated (the sensitive table for
short). S has schema A1 × A2 × . . . × Ad where d is the

number of attributes and Aj is the domain of the jth at-
tribute. The auditor wants to find a ranked list of the past
queries to the database D that could have potentially been
used to produce S. 1

All the past queries issued over a period of time against
the database D are available in a query log L. We assume,
for simplicity, that the results produced by all logged queries
Q1, . . . , Qn have the same schema as S, namely A1 × A2 ×
. . . × Ad where d is the number of attributes and Aj is the
domain of the jth attribute.

For conciseness, we will refer to the table resulting from
the execution of a query Q simply as the query table and
abuse the notation by denoting it also as Q. We will view a
table as a matrix and use lower index si or qi for tuples in
the ith position of their corresponding tables. We will use
upper index sj

i , qj
i to refer to the jth attribute of the ith

tuple.

2.2 Schema Mapping and Database Updates
We stated earlier that this paper will assume that all the

logged queries Qi have the same schema as the sensitive ta-
ble S. In general, the schema of the logged queries, as well as
of the database itself, may differ from the schema of the sen-
sitive table. While the problem of schema matching remains
complex and needs to be fully addressed in future work, we
finesse the issue by assuming that the auditor provides a
one-to-one mapping query V to map attributes Aj ∈ S to
attributes of the database tables Aj ∈ Ti ∈ D.

The candidate set of suspicious queries Q1, . . . , Qn com-
prises of queries that have at least one table and at least one
projected attribute in common with those mapped by V . If
needed, we use V to rename the projected attributes of Qi

to match the schema of S. If a query table has extra at-
tributes beyond the common schema, we omit them. If an
attribute Aj ∈ S is not projected by Qi, we add a column
of null values in its place to match S’s schema.

We reuse the techniques from [1] for the organization of
the query log and for recovering the state of the database at
the time of each individual query. Briefly, for each table T
in the database, all versions of tuples t ∈ T are maintained
in a backlog table such that the version of T at the time of
any query Qi in the query log can easily be reconstructed
from its backlog table. For the purposes of this paper, we
ignore schema changes that might have occurred over time.

3. PARTIAL TUPLE MATCHING
Our first method of measuring proximity between query

results and tables is inspired by prior work in information re-
trieval [28]. In order to rank text documents by relevance to
keyword searches, a document is commonly represented by
a weighted vector of terms 〈y1, . . . , yN 〉. A non-zero value in
yk indicates that the term tk is present in the document, and
its weight represents the term’s search value. The weight de-
pends on the term frequency in the document and on the
inverse frequency across all documents that use the term
(TF-IDF). The smaller the number of documents having tk,
the more valuable tk is for relevance ranking.

1The queries may be perfectly legitimate, but their results
may have subsequently been stolen or inappropriately dis-
closed. The exact cause of the disclosure is determined by
comprehensive investigation; our goal is to provide a tool
that helps to focus and prioritize the leads.
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In the context of database auditing, the terms are tuples
in the query tables and the documents are the query tables
Q1 through Qn, while the tuples in the sensitive table S
is the collection of keywords to search for. However, there
are significant differences between this context and that of
information retrieval:

1. Term frequency in Qi , i. e. the number of duplicate
tuples, adds no value to a match between S and Qi.

2. Document frequency, i. e. the number of tables in
{Q1, . . . , Qn} having a given tuple t ∈ S, is critically
important: we are looking precisely for the queries that
could have contributed t to S.

3. Tuples can match partially, when only a subset of their
attributes match. Even a single common value, if rare,
can be a significant indication of disclosure.

4. The number of logged queries n =
∣∣{Q1, . . . , Qn}

∣∣ may
be very large or very small, depending on how these
queries were selected.

We could address the issue of partial matches by treat-
ing attribute values as terms, rather than tuples as terms.
However, if only combinations of attribute values are rare,
but not the individual values, such single-attribute matching
would miss important disclosure clues. To handle combina-
tions, we enrich the “term vocabulary” by all possible partial
tuples, with some attribute values replaced with wildcards
(here denoted by “∗”). For example, one full tuple 〈a, b, c〉 is
augmented with six2 partial ones: 〈∗, b, c〉, 〈a, ∗, c〉, 〈a, b, ∗〉,
〈a, ∗, ∗〉, 〈∗, b, ∗〉, and 〈∗, ∗, c〉.

Definition 1. Table Qi is said to contain, or instantiate,
a partial tuple t when the wildcards in t can be instantiated
with attribute values to produce a tuple q ∈ Qi. The fre-
quency count of a partial tuple t in a collection of tables
{Q1, . . . , Qn}, denoted by freq(t), is the number of the Qi’s
that contain t.

If we take a table with 1000 tuples and 30 attributes and
augment it with all possible partial tuples, we will have
about 1000 · 230 ≈ 1012 tuples, too many even by modern
database standards. We limit this combinatorial explosion
by restricting attention to the terms we search for, i. e. the
partial tuples contained in S. Furthermore, for each query
table Qi we generate a single partial tuple per each tuple
in S. Every Qi is thus represented by the same number |S|
of partial tuples, regardless of its own size |Qi|.

For each query Qi and for each tuple s ∈ S we find a
single “representative” partial tuple t such that (1) t can be
instantiated to s and to some tuple q ∈ Qi , and (2) t has
the smallest frequency count freq(t) across all such tuples.
Condition 1 ensures that t represents common information
between s and Qi , while condition 2 picks a tuple most valu-
able for our search. Such tuple t can always be found among
intersections s ∧ q for q ∈ Qi defined below:

Definition 2. Let s and q be two tuples of the same
schema. Their intersection t = s ∧ q has a value at each
attribute where s and q share this same value, and has wild-
cards at all other attributes. In other words, t is the most
informative partial tuple that can be instantiated to both s
and q. Example: 〈a, b, c〉 ∧ 〈a, b, d〉 = 〈a, b, ∗〉.
2The 7th partial tuple of 〈a, b, c〉, namely 〈∗, ∗, ∗〉, is valid,
but has no matching value.

Tuple t that satisfies conditions 1 and 2 may not be
unique; however, its frequency count is unique as a func-
tion of Qi and s and is computed as follows:

minf(s, Qi)
def
= min

q ∈ Qi

freq(s ∧ q).

Every Qi corresponds to a multiset (bag) of exactly |S|
minimum frequency counts minf(s, Qi), one count for each
tuple s ∈ S. It is convenient to represent this multiset as a
histogram: a sequence of numbers h1, h2, . . . , hn where hk is
the number of tuples s ∈ S giving the minimum frequency
count of k. Denote this frequency histogram by hist(Qi):

hist(Qi)
def
= (h1, h2, . . . , hn)

where hk =
∣∣{s ∈ S | minf(s, Qi) = k}∣∣. (1)

Given the critical importance of document frequency
counts in relevance ranking, we decided to use the above
frequency histogram hist(Qi) to describe the relationship be-
tween Qi and S. We could assign a weight to each common
partial tuple based on its frequency count, then aggregate
the weights to compute a proximity score; but this is risky
due to the high variability in the number of the Qi’s. So,
we sidestep weight aggregation and simply assume that a
common tuple t with lower freq(t) is infinitely more impor-
tant than any number of tuples with higher freq(t). That is,
frequency-1 matches between S and Qi are infinitely more
valuable than frequency-2 matches, and these are infinitely
more valuable than frequency-3 matches etc. Hence, we rank
the queries {Q1, . . . , Qn} in the decreasing lexicographical
order of their frequency histograms:

(h1, h2, . . . , hn) > (h′
1, h

′
2, . . . , h

′
n)

def⇔ ∃K = 1...n :

h1 = h′
1 & . . . & hK−1 = h′

K−1 & hK > h′
K . (2)

Now the method is fully defined. We summarize it in Algo-
rithm 1. Below is an example to illustrate this algorithm:

Example 1. Consider a schema of two attributes
A1 × A2, where A1 has domain {a, b, c, . . .} and A2 has do-
main {0, 1}. Let the sensitive table S and three query ta-
bles Q1, Q2 and Q3 be as defined in Table 1. The fre-
quency counts freq(t) for all involved partial tuples are
given in Table 2. The computation of s ∧ q for all tuple
pairs between S and Qi, the computation of minimum fre-
quency counts, and the subsequent formation of histograms
is given in Table 3. The ranking output is as follows:
(01, 32, 03) < (11, 12, 13) < (11, 22, 03) ⇒ Q1 < Q2 < Q3.

To obtain a numerical proximity measure from a frequency
histogram in an order-preserving manner, pick some α > 0,
e. g. α = 1, and define

prox(Qi, S)
def
= f

(
hist(Qi)

)
, where (3)

f(h1, h2, . . . , hn) =
n∑

k=1

hk

α + hk

k−1∏
l=1

α

(α + hl)(α + hl + 1)

Let us justify this measure by the following lemma:

Lemma 1. In all valid settings, hist(Qi) > hist(Qj) if
and only if prox(Qi, S) > prox(Qj , S).
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Algorithm 1 : The partial tuple matching (PTM) method
for ranking/measuring proximity of tables Q1, . . . , Qn with
respect to S.

Require: Q1, . . . , Qn and S are tables having the same
schema A1 × A2 × . . . × Ad.

Ensure: A linear order over the set {Q1, . . . , Qn} by de-
creasing relevance to S.

1: For i = 1...n and ∀ (s, q) ∈ S × Qi , let freq(s ∧ q) be the
number of tables in {Q1, . . . , Qn} containing an instance
of partial tuple s ∧ q;

2: For i = 1...n and ∀ s ∈ S, compute minimum frequency
minf(s, Qi) = min q ∈ Qi freq(s ∧ q);

3: For i = 1...n, build histogram hist(Qi) = (h1, h2, . . . , hn)
where hk =

∣∣{s ∈ S | minf(s, Qi) = k}∣∣;
4: Sort {Q1, . . . , Qn} in the decreasing lexicographic order

of their frequency histograms hist(Qi);
5: Output this linear order and/or proximity scores (3).

S Q1 Q2 Q3

〈a, 1〉 〈a, 0〉 〈a, 1〉 〈b, 1〉
〈b, 1〉 〈b, 0〉 〈c, 1〉 〈c, 0〉
〈c, 0〉 〈c, 0〉

Table 1: Sensitive table S and query tables Q1, Q2

and Q3 for Example 1.

Tuple freq Q1 Q2 Q3 Tuple freq Q1 Q2 Q3

〈a, 1〉 1
√ 〈a, ∗〉 2

√ √
〈b, 1〉 1

√ 〈b, ∗〉 2
√ √

〈c, 0〉 2
√ √ 〈c, ∗〉 3

√ √ √
〈∗, 0〉 2

√ √ 〈∗, ∗〉 3
√ √ √

〈∗, 1〉 2
√ √

Table 2: Full and partial tuple frequency counts
across queries Q1, Q2, Q3 in Example 1.

Proof. Denote fk = f(hk, hk+1, . . . , hn, 0, . . . , 0); notice
the following recursion:

fn+1 = 0; fk =
hk

α + hk
+

α · fk+1

(α + hk)(α + hk + 1)
=

=
hk

α + hk
+

(
hk + 1

α + hk + 1
− hk

α + hk

)
fk+1 (4)

Assume hist(Qi) = (h1, h2, . . . , hn) > (h′
1, h

′
2, . . . , h

′
n) =

hist(Qj) as defined in (2); then hk = h′
k for k = 1...K−1

and hK > h′
K , implying hK � h′

K + 1 since these are two
integers. Denote f ′

k = f(h′
k, h′

k+1, . . . , h
′
n, 0, . . . , 0); from (4)

we have 0 � f
(′)
K+1 < 1 by induction, and furthermore,

h′
K

α + h′
K

� f ′
K <

h′
K + 1

α + h′
K + 1

� hK

α + hK
� fK <

hK + 1

α + hK + 1

Therefore fK > f ′
K , and f1 > f ′

1 too because hk = h′
k

for k = 1...K−1 and recursion (4) is strictly monotone with
respect to fk+1.

The above proves that hist(Qi) > hist(Qj) implies
prox(Qi, S) > prox(Qj , S). Analogously, hist(Qi) <
hist(Qj) implies prox(Qi, S) < prox(Qj , S), and “=” im-
plies “=”. Because for every pair of histograms one of these
alternatives holds, the lemma is proven.

Q1: min Q2: min Q3: min

S: 〈a, 0〉 〈b, 0〉 〈c, 0〉 freq 〈a, 1〉 〈c, 1〉 freq 〈b, 1〉 〈c, 0〉 freq
〈a, 1〉 〈a, ∗〉 〈∗, ∗〉 〈∗, ∗〉 2 〈a, 1〉 〈∗, 1〉 1 〈∗, 1〉 〈∗, ∗〉 2
〈b, 1〉 〈∗, ∗〉 〈b, ∗〉 〈∗, ∗〉 2 〈∗, 1〉 〈∗, 1〉 2 〈b, 1〉 〈∗, ∗〉 1
〈c, 0〉 〈∗, 0〉 〈∗, 0〉 〈c, 0〉 2 〈∗, ∗〉 〈c, ∗〉 3 〈∗, ∗〉 〈c, 0〉 2

Histogram: (01, 32, 03) Hist: (11, 12, 13) Hist: (11, 22, 03)

Table 3: The computation of frequency histograms
for queries Q1, Q2, Q3 in Example 1.

4. STATISTICAL TUPLE LINKAGE
Record linkage [6, 12, 30] is a well-established area of

statistical science, which traces its origin to the dawn of
the computer era. Ever since government organizations and
private businesses began collecting large volumes of records
about individual people, they faced a pressing need to effi-
ciently identify and match different records about the same
person. Attribute values in such records are often miss-
ing, misspelled, have multiple variants, are approximate or
even intentionally modified, exacerbating the complexity of
the linkage problem. For datasets where direct key-based
matching does not work, probabilistic record linkage meth-
ods were developed. Here we follow one popular method
based on finite mixture models [20] and measure proximity
between tables by optimally matching their records.

4.1 Statistical Tuple Linkage Framework
We have S, which is an |S| × d table with schema

A1 × A2 × . . . × Ad, and Q, which is a |Q| × d table with
the same schema. Assume that each tuple in S and in Q
describes one entity (e. g. person) from a certain unspeci-
fied collection. We want to find pairs of tuples 〈si, qi′〉 from
S × Q that both describe the same entity.

Definition 3. For every pair of tuples si ∈ S and
qi′ ∈ Q, define a d-dimensional comparison vector γ =
γ(si, qi′) such that γj = 1 if the tuples match on the jth

attribute and 0 otherwise. If the jth attribute is missing in
one of the tuples, let γj = ∗:

γ(si, qi′) = 〈γ1, γ2, . . . , γd〉 :

∀ j = 1 . . . d : γj =

⎧⎪⎨
⎪⎩

1, s j
i = q j

i′

0, s j
i �= q j

i′

∗, missing s j
i or q j

i′

Overall, we have |S| · |Q| vectors γ(si, qi′), one for each pair
of tuples.

Let Γ = 〈γk〉|S| |Q|
k=1 denote the |S| |Q|×d matrix of all com-

parison vectors. We shall define a probabilistic model that
describes the distribution of these vectors. The model is
centered around the notion of true matching between two
tuples. We assume that there is an unknown function

Match : S × Q → {M, U}, (5)

where “M” means “tuples match” and “U” means “tuples
do not match.” We can also think of M and U as a parti-
tion of S × Q into two disjoint subsets formed by matching
and nonmatching tuple pairs. For example, if S and Q con-
tain tuples representing distinct individuals, a pair si ∈ S,
qi′ ∈ Q is a true match if si and qi′ represent the same per-
son. In this case at most min(|S|, |Q|) can be true matches
(belong to M), the remainder of S × Q belong to U .

The record linkage process attempts to classify each tuple
pair 〈si, qi′〉 as either M or U , by observing comparison
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vectors γ(si, qi′). This clarification is possible because the
distribution of γ(si, qi′) for M -labeled tuple pairs is very
different from its distribution for U -labeled pairs. Let us
define two sets of conditional probabilities:

m(γ) = P [ γ(si, qi′) | 〈si, qi′〉 ∈ M ];

u(γ) = P [ γ(si, qi′) | 〈si, qi′〉 ∈ U ]. (6)

In other words, m(γ) is the probability to find a comparison
vector γ if indeed the tuples are in a true match, whereas
u(γ) is the probability of observing γ when the tuples are
not a true match. If 〈si, qi′〉 ∈ M , then the probability of
γj = 1 for most attributes with non-missing values should
be high, unless the data contains many errors. If instead
〈si, qi′〉 ∈ U , then the probability of an accidental attribute
match depends upon the distribution of attribute values in
S and Q.

A comparison vector γ that involves missing values, i. e.
with γj = ∗ for some attributes, stands for the set

I(γ) =
{
γ′ ∈ {0, 1}d

∣∣ ∀ j =1...d : γj �=∗ ⇒ γ′ j =γj}
Accordingly, for such γ we define

m(γ) =
∑

γ′ ∈ I(γ)
m(γ′), u(γ) =

∑
γ′ ∈ I(γ)

u(γ′). (7)

Fellegi and Sunter [9] formalized the matching problem.
Let us briefly describe the main elements of their work and
state the fundamental theorem. Let the comparison space
G be the set of all possible realizations of γ. In our case,
assume that no values are missing and set G = {0, 1}d. A
(probabilistic) matching rule D is a mapping from G to a
set of three random decision probabilities

D(γ) =
〈
P (M̂ | γ), P (?̂ | γ), P (Û | γ)

〉
such that P (M̂ | γ) + P (?̂ | γ) + P (Û | γ) = 1

Here, M̂ is the decision that there is a true match between
tuples si and qi′ , and Û is the decision that there is no true
match. In practice, there will be cases where we will not be
able to make such clear cut decisions, hence we allow for a
“possible match” decision denoted by “?̂”. We define two
types of errors:

1. Linking unmatched comparisons:

μ = P (M̂ |U) =
∑

γ∈G
u(γ) P (M̂ | γ); (8)

2. Non-linking a matched comparison:

λ = P (Û |M) =
∑

γ∈G
m(γ) P (Û | γ). (9)

We write a matching rule D as D(μ, λ, G) to explicitly note
its errors μ(D) and λ(D).

Definition 4. A matching rule D(μ, λ, G) is said to be
optimal among all rules satisfying (8) and (9) if

P (?̂ |D) � P (?̂ |D′)

for every D′(μ, λ, G) in this class. Intuitively, less ambiguous
matching rules should be preferred to others with the same
level of errors.

In order to construct the optimal rule, select two thresh-
olds Tμ > Tλ and fix the pair (μ, λ) of admissible error levels
such that

μ =
∑

m(γ)
u(γ)

� Tμ

u(γ), λ =
∑

m(γ)
u(γ)

� Tλ

m(γ) (10)

Define a deterministic3 matching rule D0(μ, λ, G) for any
comparison vector γ as follows:

D0(γk) =

⎧⎪⎨
⎪⎩

M̂ if Tμ � m(γ)/u(γ),

?̂ if Tλ < m(γ)/u(γ) < Tμ,

Û if m(γ)/u(γ) � Tλ.

(11)

Theorem 1 (Fellegi, Sunter). The matching rule
D0(μ, γ, G) defined by (11) is the optimal matching rule on
G at the error levels of μ and λ.

Proof. See [9].

4.2 Mixture Model and EM
As Theorem 1 demonstrates, the evaluation of m(γ)/u(γ)

is crucial in deciding whether or not two records truly match.
But how can we compute the conditional probabilities m(γ)
and u(γ)? Their definitions (6) cannot be directly applied
because no pair of records is labeled with M or U . There is
no way to compute them that works in all cases; however,
given certain assumptions about the data, m(γ) and u(γ)
can be efficiently estimated. Quite commonly [4, 15, 17] the
assumptions combine blocking and mixture models.

Blocking [15] consists in labeling a large fraction of S × Q
pairs with U (non-match) according to some heuristic. This
method substantially reduces the scope of the matching
problem by eliminating pairs of tuples that are obvious non-
matches. For example, a blocking strategy for census data
may exclude tuple pairs that do not match on zip code, with
the assumption being that two people in different zip codes
cannot be the same person.

We shall assume that, after blocking, all pairs and their
comparison vectors γk ∈ Γ with index k = 1 . . . KB are left
unlabeled, whereas all γk with index k = KB+1 . . . |S| |Q|
are labeled with U .

For the mixture model, let us assume that the comparison
vectors γk = γ(si, qi′) are conditionally independent from
each other given the M - or U -label of the pair 〈si, qi′〉.
In addition, assume that the M - and U -labels are them-
selves independently assigned to each pair, with probability
p ∈ [0, 1] to assign an M -label and probability 1−p to assign
a U -label. Then, the probability that some unlabeled pair
〈s, q〉 has a comparison vector γ̂ equals

P [γ(s, q) = γ̂] = p P [γ̂ |M ] + (1 − p)P [γ̂ |U ]

= p m(γ̂) + (1 − p) u(γ̂)

For a pair 〈s, q〉 whose label is known to be U (through block-
ing) the probability of both the label and vector γ̂ equals just
(1 − p) u(γ̂). Thus, the probability for the entire observed
matrix of comparison vectors Γ and the observed U -labels
assigned by blocking is given by the product4

KB∏
k=1

(
p m(γk) + (1 − p) u(γk)

)
·
|S| |Q|∏

k=KB+1

(1 − p) u(γk) (12)

Now one can use maximum likelihood estimation to search
for m(γ) and u(γ) that maximize the probability (12). This
estimation is carried out through the EM algorithm [13, 7].

3For a (μ, λ) not constrained by (10) the optimal rule may
have to make probabilistic decisions for borderline γ.
4An alternative approach is when the mixture model and
EM covers only the tuple pairs left unlabeled by block-
ing [15]. This would increase p, but could introduce bias.
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Before we turn to EM, let us denote by zk ∈ {0, 1} a random
variable such that

zk = 1 ⇐⇒ Match 〈si(k), qi′(k)〉 = M

In our generative model, we assume that each zk fol-
lows Bernoulli (p). Note that the zk’s are not known for
k = 1 . . . KB, i. e. pairs left unlabeled after blocking, and
zk = 0 for the blocked pairs. Recall that index k refers
to a tuple pair 〈si(k), qi′(k)〉 in product S ×Q, while index j

on top of γj
k denotes a coordinate of γk for attribute Aj .

Given a joint distribution P [X, Z |Θ] with an observed
random vector X, a hidden random vector Z and a pa-
rameter vector Θ, the EM algorithm is an iterative pro-
cedure to find parameters Θ∗ where the marginal distribu-
tion P [X |Θ] =

∑
Z P [X, Z |Θ] achieves a local maximum.

This algorithm is often used to estimate parameters of mix-
ture models [19]. The iteration step of the algorithm is given
by the following formula:

Θn+1 = argmax
Θ

E
Z ∼P [Z | X, Θn]

log P [X, Z |Θ] (13)

In our case, X includes the observed comparison matrix Γ

and the blocking U -labels 〈zk〉|S| |Q|
k=KB+1 while the hidden la-

bels are Z = 〈zk〉KB
k=1, and we want to estimate probabilities

Θ = 〈p, m(γ), u(γ)〉γ∈Γ. The joint distribution of both X
and Z equals the product

P [X, Z |Θ] =

|S| |Q|∏
k=1

(
p m(γk)

)zk
(
(1 − p) u(γk))

)1−zk

The logarithm of this expression is linear with respect to
the zk’s, making it easy to take the expectation:

E
Z ∼P [Z | X, Θn]

log P [X, Z |Θ] =

|S| |Q|∑
k=1

z̄k log
(
p m(γk)

)
(14)

+

|S| |Q|∑
k=1

(1 − z̄k) log
(
(1 − p) u(γk))

)
, where z̄k = E

Z ∼P [Z | X, Θn]

zk.

Computation of the expectations z̄k for non-blocked pairs
is the “E-step” of the EM algorithm, and the subsequent
recomputation of next-iteration parameters p̂, m̂(γk), û(γk)

to maximize (14) is the “M-step.” Denote the nth iteration
parameters by pn, mn(γk), un(γk); then the E-step is given
by the Bayes formula as follows:

z̄k = P [zk = 1 | γk] = P [M | γk] = (15)

=
pn mn(γk)

pn mn(γk) + (1 − pn) un(γk)
, k = 1 . . . KB

For the M-step, we could maximize (14) over the entire range
〈m(γ), u(γ)〉γ∈Γ, but so many parameters would overfit the
data. So, we follow [10, 15] and assume that individual
attribute matchings are conditionally independent given the
“true matching” label M or U . For γ ∈ {0, 1}d we get

m(γ) =
∏d

j=1 (mj)γj

(1 − mj)1−γj

mj = P [γj = 1 |M ]

u(γ) =
∏d

j=1 (uj)γj

(1 − uj)1−γj

uj = P [γj = 1 |U ]

If a comparison vector γ ∈ {0, 1, ∗}d has missing values,
it is treated as a set I(γ) of possible complete vec-
tors γ′ ∈ {0, 1}d, as in (7), or equivalently as a predicate

Pγ(γ′) ⇔ γ′ ∈ I(γ). The probability of Pγ(γ′) to be satis-
fied given label M or U is

m(γ) =
∏

j: γj �= ∗
(mj)γj

(1−mj)1−γj

, u(γ) =
∏

j: γj �= ∗
(uj)γj

(1−uj)1−γj

.

With the above assumption, maximizing (14) computes the
n + 1st iteration parameters p̂ and 〈m̂j , ûj〉dj=1. The formu-

las for p̂ and m̂j are as follows:

p̂ = |S|−1|Q|−1
∑

k=1...KB

z̄k, m̂j =
∑

k=1...KB

k: γ
j
k
�= ∗

z̄k γj
k

/ ∑
k=1...KB

k: γ
j
k
�= ∗

z̄k. (16)

Since most tuple pairs in S × Q belong to U (are not “true
matches”), the parameters 〈uj〉dj=1 can be well approximated
by ignoring the z̄k’s altogether (setting them all to 0) [15]:

uj ≈
∣∣∣{k

∣∣∣ 1 � k � |S| |Q|
γ

j
k

= 1

}∣∣∣
/ ∣∣∣{k

∣∣∣ 1 � k � |S| |Q|
γ

j
k
�= ∗

}∣∣∣ (17)

We take advantage of this approximation, and use EM only
to estimate p and 〈mj〉dj=1. Once the EM iterations con-
verge, we obtain all the parameters necessary to perform
statistical tuple linkage between the tuples in S and in Q.

4.3 Proximity Measure
Return to the setup of Section 2 and consider a ta-

ble S containing sensitive data and the query tables
Q1, Q2, . . . , Qn to be ranked by their proximity to S. The
ranking is performed by optimally matching the tuples in
each Qi to the tuples in S and comparing the weights of these
matches. According to Theorem 1, the fraction m(γ)/u(γ)
is the best measure to quantify whether or not a comparison
vector γ indicates a true match. Let us make the following
definition (inspired by [15]):

Definition 5. The weight of a tuple pair 〈s, q〉 from
S × Q, whose comparison vector is γ, is given by

w(s, q) = log
m(γ)

u(γ)
=

d∑
j=1

⎧⎪⎨
⎪⎩

log mj

uj , γj = 1

log 1−mj

1−uj , γj = 0

0, γj = ∗
The plus-weight of 〈s, q〉 is 0 if this tuple pair is labeled
with U by blocking, otherwise it is defined as

w+(s, q) =

{
w(s, q), w(s, q) � 0

0, w(s, q) < 0
(18)

We begin by computing the parameters p̂ and 〈m̂j , ûj〉dj=1

via the framework described in Section 4.2, where we set
Q = Q1 ∪ Q2 ∪ . . . ∪ Qn. We take this duplicate preserving
union and run EM over Q to ensure that all parameters are
the same for all Qi’s. Blocking assigns U -labels to all tuple
pairs 〈s, q〉 that do not share at least one “discriminating”
attribute value; see Section 7 for details.

Having estimated the mj ’s and the uj ’s, we use (18) to
compute the plus-weights of all pairs in S×Qi left unlabeled
by blocking. All pairs labeled with U by blocking receive
weight 0. Then for each Qi we seek a maximum-weight
matching that assigns each record in Qi to one and only one
record in S. The weight of a matching is defined as the sum
of plus-weights of all matched pairs. Plus-weights are used
so that negative weights never impact the matching process.

66



S Qi

w1

w2

w|S x Qi|

tuple

weighted edge

(a) Assign weights to
all edges among pairs of
tuples in S × Qi.
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w45

w54

w63

w40
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w2 + w12 +…+ w63

(b) Find a 1-to-1
matching to maximize
the sum of weights

Figure 1: Using statistical tuple linkage to measure
proximity between tables S and Qi.

Algorithm 2 : The statistical tuple linkage method (STL)
of measuring proximity of tables Q1, . . . , Qn and S.

Require: Q1, . . . , Qn and S are tables having the same
schema A1 × A2 × . . . × Ad.

Ensure: The computation of the maximum matching
weights w(S, Qi).

1: Set Q = Q1 ∪ Q2 ∪ . . . ∪ Qn, locate missing values;
2: Perform blocking to label some tuple pairs

〈s, q〉 ∈ S × Q as non-matching;
3: Compute comparison vectors γ(s, q) for all tuple pairs

in S × Q, see Definition 3;
4: Initialize parameters (we set p̂ to 0.05, m̂1, . . . , m̂d to

0.95) and compute û1, . . . , ûd by (17);
5: Repeat E-step (15) and M-step (16) of EM algorithm

over p̂, m̂ until expectations 〈z̄k〉KB
k=1 stabilize, see (15);

6: For each Qi, compute the plus-weights of all tuple pairs
in S × Qi using (18);

7: Find maximum 1-to-1 matchings using Kuhn-Munkres
algorithm over complete bipartite graphs S × Qi;

8: Output the sum of plus-weights of matched tuple pairs.

We compute the maximum-weight matching with the help
of the Kuhn-Munkres algorithm for optimal matching over a
bipartite graph, also known as the Hungarian algorithm [16,
22, 29]. The weight of the matching is the proximity measure
between Qi and S that we output, to be used in ranking
queries and measuring disclosure.

Figures 1(a) and 1(b) graphically portray the application
of the statistical tuple linkage method to the problem of
query ranking. Fig. 1(a) shows computed weights for all
edges in S × Qi, and Fig. 1(b) illustrates the result of us-
ing Kuhn-Munkres to maximize the sum of plus-weights as-
signed to edges while ensuring that each tuple in Qi and S
has at most one edge.

Algorithm 2 summarizes the computation steps involved
in measuring proximity through statistical tuple linkage.

5. DERIVATION PROBABILITY GAIN
This method measures proximity between two tables Q

and S based on the minimum-length (maximum-probability)
derivation of S from Q. Intuitively, one can think of an
archiver that tries to compress S given the tuples in Q. The
compressed “file” includes both the new values in S recorded

“as-is” and the link structure to copy the repeated values.
The size of the archive, expressed through its probability,
or more exactly the size difference made by the presence
of Q, gives the proximity measure. We consider a specific
compression procedure that uses the minimum spanning tree
algorithm.

Definition 6. Given tables Q = 〈q1, q2, . . . , q|Q|〉 and
S = 〈s1, s2, . . . , s|S|〉, a derivation forest from Q to S is
a collection of disjoint rooted labeled trees {T1, T2 . . . , Tk}
whose roots are in Q and non-root nodes are in S. The trees’
bodies have to cover all tuples in S. A derivation forest de-
fines for each si ∈ S a single parent record π(si) ∈ Q ∪ S.

Statement 1. The number of possible derivation forests
from Q to S equals |Q| (|S| + |Q|)|S|−1.

Proof. See [11] for a proof of a very similar result for
trees; see also [27].

We consider a generative model for S given Q with two
parameter groups, for each attribute j = 1 . . . d:

• Matching probability μj ∈ [0, 1],

• Default distribution p j(v) over all v ∈ Aj .

In this model, we generate the tuples of S from the tuples
of Q as follows:

1. Pick a derivation forest D uniformly at random. For-
est D defines a parent π(si) for each record si ∈ S.
According to Statement 1, the probability of D is:

P [D] = const =
(|Q| (|S| + |Q|)|S|−1)−1

.

2. Generate the tuples of S in an order so that each si

is always preceded by π(si). To generate tuple si =
〈s1

i , s
2
i , . . . , s

d
i 〉, for each j = 1...d do: Toss a Bernoulli

coin zj
i with probability μj to fall 1 and 1−μj to fall 0.

If zj
i = 1, just copy the parent’s jth attribute value

πj(si) into sj
i ; if zj

i = 0, generate sj
i independently ac-

cording to the default distribution p j(sj
i ).

Denote by Z the outcomes of all Bernoulli coins zj
i . The

joint probability of everything being generated, both hidden
variables (D, Z) and observed tuples (S), given Q equals

P [D, Z, S | Q] = P [D] ·
|S|∏
i=1

d∏
j=1

p j(sj
i )

1−z
j
i ×

× (μj)z
j
i (1 − μj)1−z

j
i (19)

with the constraint that sj
i = πj(si) wherever zj

i = 1 (oth-
erwise P [D, Z, S |Q] = 0).

To measure proximity between tables Q and S, we use
P [D, Z, S |Q] with hidden variables D and Z chosen to max-
imize this probability. This can be viewed as an instance of
the minimum description length principle, where we choose
best D and Z to describe S given Q. The “length” of de-
scription 〈D, Z, S〉 is computed as − log2 P [D, Z, S |Q].

Definition 7. Let us define the weight w(si, t) of an edge
between tuples si ∈ S and t ∈ Q ∪ S to be:

w(si, t) :=
∑

j = 1...d

s
j
i = tj

max

{
− log

(
1 − μj

μj
p j(sj

i )

)
, 0

}

Note the symmetricity: w(si, t) = w(t, si); this is important
for our weighted spanning tree representation. Note also
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that edges 〈si, t〉 whose matching attribute values sj
i = tj

have low probability to occur randomly are given more
weight.

Statement 2. Probability (19) reaches maximum when
derivation forest D is chosen to maximize the sum

w(D) :=
∑|S|

i=1 w
(
si, π(si)

)
. (20)

Proof. Formula (19) can be rewritten as follows:

P [D, Z, S |Q] = P [D]

∏|S|
i=1

∏d
j=1 p j(sj

i )∏|S|
i=1 W

(
zi, si, π(si)

) (21)

where W
(
zi, si, π(si)

)
=

d∏
j=1

p j(sj
i )

z
j
i

(μj)z
j
i (1 − μj)1−z

j
i

Since P [D] = const, this term does not affect the value
of (19). Once D is fixed, we can pick optimal Z = Z∗(D)
by independently minimizing each W

(
zi, si, π(si)

)
, which

becomes (recall that sj
i �= πj(si) ⇒ zj

i = 0):

Wopt(z
∗
i , si, π(si)

)
= W ′(si, π(si)

) ·
d∏

j=1

1

1 − μj

where W ′(si, π(si)
)

=
∏

j: s
j
i = πj(si)

min
{

1−μj

μj p j(sj
i ), 1

}

By Definition 7, the weight w(si, π(si)) of an edge between
tuples si and π(si) is equal to the negative logarithm of
W ′(si, π(si)

)
. Therefore, we can rewrite (21) for opti-

mal Z = Z∗ as below:

log P [D, Z∗, S | Q] = log P [D] +

|S|∑
i=1

w
(
si, π(si)

)

+

|S|∑
i=1

d∑
j=1

log p j(sj
i ) + |S|

d∑
j=1

log (1 − μj). (22)

It is easy to see now that the optimal derivation forest D∗

is such that the sum of edge weights w
(
si, π(si)

)
over the

trees in D∗ is maximized.

The search for the optimal maximum-weight D∗ is eas-
ily converted into a minimum (or maximum) spanning tree
problem. Given tables Q and S, let G = (V, E) be an undi-
rected graph with vertices V = Q ∪ S ∪ {ξ} where ξ is a new
special vertex, and with edges formed by all (Q∪S)×S and
{ξ}×Q. Set edge weights according to Definition 7 for non-ξ
edges, and set w(ξ, qi) = wmax for all qi ∈ Q where wmax is
chosen larger than any non-ξ weight.

The symmetricity of weight function w(si, t) allows us to
set one weight per edge, independently of its direction to-
wards ξ.

Statement 3. There is a one-to-one correspondence be-
tween maximum spanning trees for G and optimal derivation
forests from Q to S.

Proof. Given a forest D∗, a spanning tree is produced
by adding vertex ξ and connecting all qi ∈ Q to ξ. Given
a spanning tree T over G that includes all edges connecting
ξ and Q, a derivation forest is formed by discarding ξ and
its adjacent edges. This forest has exactly one Q-vertex per
each tree:

• No Q-vertex would imply that some S-vertices are not
connected to ξ in T ;

• Two Q-vertices would create a cycle in T as they are
connected through S and through ξ.

Any maximum spanning tree T over G includes all ξ-edges
since these are the heaviest edges: a tree without edge (ξ, qi)
gains weight by adding (ξ, qi) and discarding the lightest
edge in the resulting cycle. If the derivation forest over Q∪S
that corresponds to T is not optimal, the tree gains weight
by replacing this forest with a heavier one; hence, a max-
imum spanning tree corresponds to an optimal derivation
forest. Conversely, if the spanning tree that corresponds to
forest D∗ is not maximum-weight, the forest is not optimal
because a heavier forest is given by any maximum spanning
tree.

Corollary 1. Maximum probability P [D∗, Z∗, S |Q] can
be computed by taking the weight w(T ) of a maximum span-
ning tree over graph G formed as above, subtracting the
ξ-edge weights to get w(D∗) = w(T ) − |Q|wmax, and using
formula (22):

log P [D∗, Z∗, S | Q] =

= − log |Q| − (|S| − 1) log (|S| + |Q|) + w(D∗) +

+

|S|∑
i=1

d∑
j=1

log p j(sj
i ) + |S|

d∑
j=1

log (1 − μj). (23)

Proof. Follows from Statements 1, 2, and 3.

We compute the proximity measure between Q and S by
comparing P [D∗, Z∗, S |Q] to the maximum derivation prob-
ability of S without Q, written as P [D∗∗, Z∗∗, S ]. It is com-
puted analogously to P [D∗, Z∗, S |Q] but with a “dummy”
one-tuple Q, and represents the amount of information con-
tained in S. The proximity between Q and S is defined
as the log-probability gain for the optimal derivation of S
caused by the presence of Q:

prox (Q, S) := log
P [D∗, Z∗, S | Q ]

P [D∗∗, Z∗∗, S ]
(24)

Algorithm 3 summarizes the computation steps for this
method. In our experiments, we take ∀ j: μj = 1/2 and
compute the default probabilities p j(v) of attribute values
as frequency counts across all query tables.

Figures 2(a) through 2(d) graphically illustrate the DPG
method. In Figure 2(a), weights are assigned to all edges
among tuples of S, and in Figure 2(b), a maximum spanning
tree is computed based upon these weights. Figure 2(c)
adds the tuples of Q to the graph, computing and assigning
weights betweens edges of Q × S. In Figure 2(d), a new
maximum spanning tree is computed now using edges inside
S and in Q × (S ∪ {ξ}). The weights of the remaining edges
are used to calculate the benefit of Q to S.

6. COMPARISON OF THE METHODS
Let us take a step back and look at the big picture:

what are the similarities and differences between these three
ranking methods? All three methods look for matching at-
tributes between the tuples of sensitive table S and of each
query table Qi, yet each method uses different intuition
and techniques, resulting in different behavior. We contrast
some of the characteristics of our three methods in Table 4.
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�
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Figure 2: Illustration of the derivation probability gain method of measuring proximity of tables Q and S

Algorithm 3 : The derivation probability gain method of
measuring proximity of tables Q1, . . . , Qn and S.

Require: Q1, . . . , Qn and S are tables having the same
schema A1 × A2 × . . . × Ad.

Ensure: The computation of prox (Qi, S)
1: Scan all query tables and estimate frequency p j(v) > 0

for ∀ v ∈ Aj and ∀ j = 1 . . . d;
2: Use Definition 7 to compute weights w(s, t) for ∀ s ∈ S

and ∀ t ∈ Qi ∪ S;
3: Form graph G with vertices in Qi ∪ S ∪ {ξ} and edges

from ξ to Qi and from S to Qi∪S. Assign a dominating
weight wmax to ξ-edges;

4: Run the Maximum Spanning Tree (MST) algorithm over
G, let w(T ) be its weight;

5: Set w(D∗) = w(T )− |Qi|wmax and use (23) to compute
log P [D∗, Z∗, S |Qi];

6: Run MST algorithm over clique S and use (23) to com-
pute log P [D∗∗, Z∗∗, S ] taking |Q| = 1;

7: Compute prox (Qi, S) using (24).

For Partial Tuple Matching (PTM) the most important
ranking factor is the “document frequency” of partial tu-
ples shared between S and Qi: the number of other query
tables that also contain these shared tuples. The two other
methods compute their statistics over all tuples in the union
Q1 ∪ Q2 ∪ . . . ∪ Qn, which is vulnerable to the bias caused
by repetitive data and by the variation in the query table
size |Qi|. On the other hand, document frequency may be
a poor statistic if the number of queries is small. Thus,
PTM ranking is combinatorial rather than statistical. The
PTM method counts frequency of attribute combinations
(partial tuples), while the other two methods account for
each matching attribute individually in tuple comparisons.

The Statistical Tuple Linkage (STL) method stems from
the assumption that the tuples in S and Qi represent ex-
ternal entities, and works to identify same-entity tuples.
Its probability parameters 〈mj , uj〉dj=1 treat equally all val-
ues of the same attribute and assume conditional attribute
independence. If the values of a certain attribute have
a strongly non-uniform distribution, some being rare and
highly discriminative and others overly frequent, the algo-
rithm will show suboptimal performance (see Example 2).
Missing/default values receive special attention in STL since
they differ significantly from other values, and blocking im-
proves efficiency.

Q1

Q2

S

distinct
value areas

single (duplicate)
value area

5 attrs.
5 attrs.

Figure 3: Impact of highly non-uniform attributes
on ranking

Example 2. In Figure 3, the white areas represent at-
tributes all having the same value, say zero. The grey area
represents attributes having unique values. Same-colored ar-
eas in Q1, Q2 match with S; the proportion of diagonal and
vertical grey areas are equal. STL ranks Q2 above Q1 while
PTM and DPG rank Q1 and Q2 equally. The difference
for STL is due to the non-uniform distribution of values in
“diagonal” attributes (some values are common and others
unique).

The intuition behind Derivation Probability Gain (DPG)
is that shared information between S and Qi helps to com-
press S better in the presence of Qi than alone. Because tu-
ples in S can be “compressed” by deriving them from other
S-tuples (even without Qi), DPG may be better than the
other two methods if S contains many duplicates or near-
duplicates. However, DPG makes certain attribute indepen-
dence assumptions and collects value statistics by counting
tuples in query tables, which is prone to bias.

7. EXPERIMENTAL RESULTS
We implemented the three proposed methods as Java ap-

plications and performed experiments on a Windows XP
Professional Version 2002 SP 2 workstation with 2.4GHz
Intel Xeon dual processors, 2 GB of memory, and a 136 GB
IBM ServeRAID SCSI disk drive.
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PTM STL DPG

Intuition We look for documents (the
Qis) that share with S terms
(partial tuples) of low docu-
ment frequency.

Each tuple represents an ex-
ternal entity; we look for Qis
that describe many entities in
common with S.

We measure how much Qi

helps to “compress” the in-
formation in S, compared to
“compressing” S alone.

Algorithmic techniques Partial tuples (with wild-
cards), simple combinatorics

Mixture model, EM, optimal
weighted bipartite matching

Derivation model, minimum
spanning tree computation

Ranking measure Document frequency his-
tograms over select partial
tuples shared by Qi and S

Maximum weight of a 1-to-
1 matching between tuples of
Qi and of S

Log-probability gain for the
optimal derivation of S given
Qi vs. of S alone

Time/space optimization Selecting only a few best par-
tial tuples for each Qi

Blocking: heuristic removal
of some tuple non-matches

None at the moment

Sensitivity to attribute
combinations

High: partial tuples can rep-
resent any possible attribute
combination

Limited: attribute matches
assumed independent given
tuple match/non-match

Limited: given a derivation,
each value contributes weight
independently

Single-tuple sensitivity High: a single rare tuple
may decide the ranking

Limited: proximity measure
is aggregated

Limited: proximity measure
is aggregated

Robustness w. r. t. near-
duplicates within one Qi

High: only frequency across
all Qis affects ranking

Limited: they affect both
EM and bipartite matching

Moderate: they affect value
statistics, but not derivation

Robustness w. r. t. near-
duplicates within S

Limited: each near-
duplicate within S con-
tributes independently

Limited: they affect both
EM and bipartite matching

High: they add to derivation
of S given Qi as much as to
derivation of S alone

Robustness w. r. t. highly
non-uniform attributes

High: value-level partial tu-
ples

Limited: attribute-level pa-
rameters (Example 2)

High: value-level parameters

Number of model param-
eters

N/A Small: p and 〈mj , uj〉dj=1 Moderate: a probability for
each attribute value

Penalty for |Qi| size No penalty No penalty Yes, log
(|Qi|(|S|+ |Qi|)|S|−1

)
see Statement 1

Table 4: Comparison of the ranking methods

We used the IPUMS data set [26]; the complete dataset
consists of a single table with 30 attributes, and 2.8 million
records with household census information. We used ran-
dom samples from this dataset for our experiments below.
For each attribute in the IPUMS dataset, missing values are
represented by specific values. For example, a value of 99 for
IPUMS attribute statefip represents an unknown state of
residence rather than a household’s state of residence. For
the STL method, missing attribute values are omitted from
rank score calculations and from parameter estimation as de-
scribed in Section 4.2. We used the following blocking strat-
egy for the STL method. For a pair of tuples 〈s, q〉 ∈ S×Q to
be considered as a possible match, s and q must match on at
least one of their discriminating attribute values. Otherwise,
the pair is discarded or blocked. An attribute value v is con-
sidered discriminating depending upon the number of tuples
in S and in Q with that attribute value; computed as the
product ρ(v) of the number of tuples in S having the value v
in attribute Aj and the number of tuples in Q with the same
value. If ρ(v) < |Q|, we consider v to be discriminating.

Ideally, we would like to rank queries higher if they have
a greater chance of being a source of information contained
in S. We formulate some desirable properties to compare
our ranking methods in experiments:

1. Given a single query Q1 whose tuples have been in-
serted into table S, and other queries Q2, . . . , Qn

that have not contributed any tuples to S, no query
Q2, . . . , Qn is ranked above Q1.

2. Given queries Q1, Q2 whose tuples have been inserted
into table S and other queries Q3, . . . , Qn that have
not contributed any tuples to S, no query Q3, . . . , Qn

is ranked above Q1 or Q2.

3. Given queries Q1, Q2 whose tuples have been inserted
into table S, and the tuples inserted into S by Q1 are
a superset of those inserted by Q2, Q1 is ranked above
Q2.

4. Given queries Q1, Q2 having inserted the same subset
of tuples into table S, and the number of tuples in Q2

is larger than Q1, Q1 is ranked above Q2.

5. Given that S may have been subsequently updated and
thus some attribute values are retained while others
are modified, the above properties hold.

Property 1 says that if S has been copied from a single
query Q1, then Q1 should be ranked first. Properties 2
to 4 address the usage of multiple queries to populate S.
Property 5 allows for the possibility that the data might
have been updated over time and that tuples in Qi and S
now match only on some of their attribute values.

7.1 Match Set Size
We used queries Q0, . . . , Q5, each with 1000 randomly

selected tuples such that |Qi| = 1000, |Qi ∩ Qj | = 0, i �=
j, |Q0 ∩ S| = 0, |Q1 ∩ S| = 200, |Q2 ∩ S| = 400, |Q3 ∩ S| =
600, |Q4 ∩ S| = 800, |Q5 ∩ S| = 1000, |S| = 3000. For
each Qi, Qj , |Qj ∩ S| > |Qi ∩ S|, j > i. Random selection
was done by assigning each tuple a distinct random number
0, . . . , n− 1, where n is the dataset size and selecting tuples
on ranges of these numbers. This experiment is intended
to give an indication of the goodness of each method with
respect to Properties 1 to 3. All three methods exhibited
similar goodness with respect to these properties since each
Qi+1 ranked above Qi.
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Elapse Time (Minutes)
|S| PTM STL DPG

S ≡ Q0 (small) 5.7 0.73 5.95
S ≡ Q4 (large) 171 16 116

Table 5: Impact of the size of S on the perfor-
mance of each method; Qi ⊂ Qi+1, |Q0| = 200, |Q1| =
500, |Q2| = 1000, |Q3| = 2000, |Q4| = 5000

7.2 Overlapping Matching Sets
In these experiments, Qi ⊂ Qi+1, |Q0| = 200, |Q1| =

500, |Q2| = 1000, |Q3| = 2000, |Q4| = 5000. In a first ex-
periment, the sensitive table S is identical to query Q0 with
200 tuples. In a second experiment, the sensitive table S
is identical to query Q4 with 5000 tuples. In both experi-
ments, each larger query includes all tuples of the smaller
sizes. These experiments are intended to give an indication
of the goodness of each method with respect to Properties 1
through 4. In the first experiment, PTM and STL rank all
queries equally since they have no penalty for query size.
However, DPG has a penalty for query size and ranks Qi+1

below Qi due to its greater size and extraneous tuples with
respect to S. In the second experiment, all three methods
have similar goodness as each Qi+1 ranked above Qi.

7.3 Perturbation
This experiment was intended to give an indication of the

goodness of each method with respect to Property 5. The
perturbation reflects the fact that the tuples in S might,
for example, have been updated after the time the data was
acquired by the 3rd party to the time the data was recovered
by the party claiming to be its rightful owner and source.
In this experiment, |Q0| = 1000, |S| = 1000, |Q0 ∩S| = 1000
before tuples in S are perturbed, and |Qi| = 1000, |Qi∩S| =
∅, |Qi ∩ Qj | = ∅, i ∈ 1, . . . 5, i �= j. A percentage of values
are perturbed in S (we perturbed 20%, 40%, 60%, 80% of
values in S in separate experiments); perturbed values could
appear in any attribute. All methods correctly ranked Q0

above Q1, . . . , Q5.

7.4 Performance
In Table 5, we show the elapse time in minutes that each

method required to compute the results presented in Sec-
tion 7.1. These results show the impact of the sensitive table
size on the performance of each method. Table 5 contrasts a
small size of S (S is Q0, |Q0| = 200) verses a large size (S is
Q4, |Q4| = 5000). The results show that all methods are sen-
sitive to both the size of S and Q, but that the STL method
has overall the best performance. With the STL method,
simple comparisons among attribute values in tuples of Q
and S are used to generate the comparison verctor γ which
is then used in the iterative step of the EM algorithm. The
PTM method requires complex comparisons to determine if
a tuple either matches or is partially matched by another tu-
ple. Since the number of these comparisons is determined by
|S|, the PTM method is significantly impacted by this cost
when |S| is large. We used indices to optimize these com-
parisons. However, these indices are in-memory Java objects
that consume additional memory resources, thus also hav-
ing an impact on performance. In comparison with the STL
method, the DPG method computes comparisons among tu-
ples in S in addition to comparisons between tuples of Q and
S.

We note that the performance of the STL method can be
further improved by increasing the level of blocking, as long
as it does not significantly affect the accuracy of ranking. It
may also be possible to apply similar types of optimizations
to the DPG method to improve its performance.

8. CONCLUSION
In this paper, we have introduced and studied the prob-

lem of ranking a collection of queries Q1, . . . , Qn over a
database D with respect to their proximity to a table S
which is suspected to contain information misappropriated
from the results of queries over D. We have proposed, devel-
oped and contrasted three conceptually different query rank-
ing methods, and experimentally evaluated each method.

We conclude this paper with some remaining issues that
need to be addressed in the future. First, our desirable prop-
erties used for empirical comparisons are defined informally
and offer only an initial set of principles by which to evaluate
ranking methods. A formal and complete set of properties
would be needed to precisely and fully compare the qual-
ity of ranking methods and provide a basis for an in-depth
empirical analysis of ranking methods. Second, a typical
dataset consists of attributes that are categorical, continu-
ous, and textual. The simple match/non-match dichotomy
may be too simplistic for non-categorical values, which calls
for an extension to similarity matching. Third, while each
our ranking method has its own intuition and own advan-
tages, they could do even better in combination, or borrow
ideas from each other. Finally, our Java implementation of
each method was useful for experimentation, but we hope
that future work will improve performance.
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