
Research Report

Developing Tightly-Coupled Applications on IBM DB2/CS
Relational Database System: Methodology and Experience

Rakesh Agrawal Kyuseok Shim

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,
its distribution outside of IBM prior to publication should be limited to peer communications and speci�c requests. After outside
publication, requests should be �lled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

IBM
Research Division
Yorktown Heights, New York � San Jose, California � Zurich, Switzerland

Developing Tightly-Coupled Applications on IBM DB2/CS
Relational Database System: Methodology and Experience

Rakesh Agrawal Kyuseok Shim

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

ABSTRACT: We present a methodology for tightly coupling applications to the IBM DB2/CS
relational database system to build high-performance data-intensive applications, without requir-
ing any change to the DB2/CS software. Our technique utilizes user-de�ned functions in SQL
statements in a novel way to selectively push parts of the application that access data records and
perform computations on them into the database systems. We thus avoid one-at-a-time record
retrieval from the database address space to the application address space, saving both copying
and process context switching costs for each record. Our case study of tightly integrating a data
mining application with the DB2/CS system shows that our approach resulted in nearly two-fold
improvement in the application performance, while changes to the existing application code were
minimal.

1. Introduction

The relational query language SQL lacks computational completeness to express the non-data-
manipulation parts of an application. The current paradigm in developing database applications
is to use loosely-coupled SQL with some general-purpose host programming language. The front-
end of the application is implemented in the host programming language and SQL statements are
embedded in it. The application uses a SQL select statement to retrieve the set of records of
interest from the database. A loop in the application program copies records in the result set
one-by-one from the database address space to the application address space, where computation is
performed on them. This approach has two performance problems: i) copying of records from the
database address space to the application address space, and ii) process context switching for each
record retrieved, which is costly on a database system built on top of the UNIX operating system.

The on-line transaction processing applications in which relational databases have been used
with great success typically retrieve a small amount of data. Therefore, the loose-coupling does
not cause severe performance problem. Relational databases are now being increasingly used in
decision-support applications such as data mining and data warehouse applications [5] [13]. These
applications typically examine a large portion of database and perform complex computations to
analyze the retrieved data. Poor performance is often the deterrent in using relational databases
in these applications.

We present a methodology for tightly-coupled integration of application programs with the IBM
DB2/CS relational database system. Instead of bringing the records of database into the applica-
tion program, we selectively push parts of the application program that perform computation on
retrieved records into the database system, thus avoiding the performance degradation cited above.
Our approach is based on a novel way of using the user-de�ned functions in SQL statements [8]. A
major attraction of our methodology is that it does not require changes to the DB2 software. We
validated our methodology by tightly-coupling a data mining application|discovering association
rules [1]. We report on this experience and present performance results using real-life data that show
nearly two-fold performance advantage for tight-coupling over loose-coupling. The programming
e�ort in converting the loosely-coupled application to a tightly-coupled one was minimal.

Related Work. The idea of realizing performance gains by executing user-speci�ed computations
within the database server rather than in the applications has manifested in the past in several
systems. Works on database programming languages [4], object-oriented database systems [3], and
the integration of abstract data types in relational systems (e.g. [9] [12]) have been partially driven
by the same motivation. Stored procedures in commercial database products have been designed
for the same purpose. For example, Oracle [11] provides a facility to create and store procedures
written in PL/SQL as named objects in the database to reduce the amount of information sent over
a network. Alternatively, an application can send an unnamed PL/SQL block to the server, which
in turn complies the block and executes it. The Illustra DBMS (earlier called Montage DBMS [10])
also provides a facility for user-de�ned aggregations to be performed within the DBMS.

The contribution of this paper lies in providing a methodology to those interested in building
high-performance data-intensive decision-support applications using the DB2/CS database system.
We also provide a case study of building a data mining application using this methodology and
measurements from this application with quanti�ed performance gains. This application is now
being �eld-deployed. DB2/CS also provides a stored procedure facility [7], but the performance
gains using this facility over loose-coupling were not signi�cant.

1

Paper Organization. The organization of the rest of the paper is as follows. In Section 2, we
�rst review the structure of computation of typical decision-support applications and describe how
they are coded in the loosely-coupled integration. Next, we present our methodology for tightly-
coupled integration. In Section 3, we give the case study of developing a tightly-coupled data
mining application using this methodology. We also present the performance comparison between
loosely-coupled and tightly-coupled integration. We conclude with a summary in Section 4.

2. Methodology

We introduce our methodology by giving an example of a simple loosely-coupled application
and transforming it into a tightly-coupled one.

2.1. Computational Structure of a Decision-Support Application

Consider the nature of computation in a typical decision-support application. First some local
variables are declared and initialized to keep track of the state of computation. Then an embedded
SQL statement is used to de�ne the set of desired records. This statement may cause the database
system to perform computations such as sorting records in the table, performing group-by operators,
computing aggregations, and applying selection predicates. Next, a loop in the application program
accesses records in the result set one-by-one. As the records are fetched, some computation is
performed using the values in the �elds of the records, possibly saving intermediate results in the
local variables. After exiting from the loop, the �nal computation is performed based on the state
generated by the previous loop.

2.2. Loosely-Coupled Integration

Figure 1 shows a simple loosely-coupled application. This application retrieves sales records
and counts how many customers bought each of the items sold. The schema for the table is sales
(tid, itemno). If two items i1 and i2 were bought in the customer transaction t1, the sales table will
have two records, < t1; i1 > and < t1; i2 >. This application is somewhat contrived | we chose it
to simplify the exposition of our methodology. Later in the paper, we will give example of a real
application.

The embedded SQL statements are pre�xed by exec sql and are terminated by a semicolon.
They can include references to host variables and such references are pre�xed with a colon to
distinguish them from column names of the tables. The variables tid and itemid of line 5 in
Figure 1 are such host variables. The status of the execution of a SQL statement is returned to the
application program in the so called SQL Communication Area. In particular, a numeric status
indicator called sqlcode is returned.

Coming to the speci�cs of the application in Figure 1, the statement in line 1 declares and
initializes the array count that maintains the count of the number of occurrences of each item in
the sales table. The SQL statement in line 2 connects the application to the database in which the
sales table is stored.

To access a set of records returned by a select statement, an iteration mechanism called cursor
is provided. The statement in line 3 de�nes a database iterator called cur for the query speci�ed in
the select statement. The for read only clause allows block I/O; if this clause is omitted, the
performance degrades severely.

2

procedure AlgorithmLC()
begin

1 declare and initialize the array count[MAXSIZE];
2. exec sql connect to database;
3. exec sql declare cur cursor for

select *

from sales
for read only;

4. exec sql open cur;
5. exec sql fetch cur into :tid, :itemid;
6. while (sqlcode 6= endOfRec) do f
7. count[itemid] := count[itemid] + 1;
8. exec sql fetch cur into :tid, :itemid;
9. g
10. exec sql close cur;
11. print count array;
end

Figure 1: A Loosely-Coupled Application

The query is not executed until the cursor is opened by the SQL statement in line 4 of the
algorithm. The fetch statement in line 5 is used to obtain the next record in the result set of the
query. Fields of the retrieved record are copied into host variables speci�ed in the into clause.
Since the result of the select statement is normally a set of records, the fetch is executed inside a
loop until there are no more records in the result set. Note that each fetch results in copy from the
database address space to the application address space and process context switches, causing the
performance degradation mentioned in the introduction. After we exit from the loop, the cursor
cur is closed in line 10.

2.3. User-De�ned Functions in DB2/CS

User-de�ned functions in DB2/CS [7] [8] are completely analogous to the built-in scalar functions
except that they are de�ned and implemented by the users in a general-purpose programming
language. Users can register a user-de�ned function via a create function statement, which
describes the function, its input arguments, return value, and some other attributes. The executable
of a user-de�ned function is stored at the database system server site so that database system can
access and invoke the function whenever the function is referenced in a SQL statement. DB2/CS
does not allow SQL statements inside a user-de�ned function.

The user-de�ned functions are normally kept in the subdirectory sqllib/function of the directory
in which DB2/CS has been installed. More than one user-de�ned function can be kept in a library
in this directory and there can be more than one library. Assume we have a user-de�ned function,
called allocSpace(), written in C++. If this function is in a library called mineudf, we can register
the function as follows:

create function allocSpace(int)

returns int

3

procedure AlgorithmTC()
begin

1. exec sql connect to database;
2. exec sql select allocSpace(MAXSIZE) into :blob

from onerecord;
3. exec sql select *

from sales
where updateCount(:blob, TID, ITEMID) = 1;

4. exec sql select getResult(:blob) into :resultBlob
from onerecord;

5. update the array count[MAXSIZE] using resultBlob;
6. exec sql select deallocSpace(:blob)

from onerecord;
7. print count array;
end

Figure 2: A Tightly-Coupled Application

external name 'sqllib/function/mineudf!allocSpace'

language c++ parameter style db2sql

not variant no sql no external action

not fenced

The important clause from our perspective in the above create statement is the not fenced

clause. It allows the function to run in DB2's address space. The not variant clause indicates
that the function always returns the same result for given argument values. The no sql clause
speci�es that the function does not contain any SQL statement. The no external action clause
indicates that the function does not take some external action such as sending a message. These
clauses are hints to the optimizer.

2.4. Tightly-Coupled Integration

For tightly coupling an application, we would like not to return from the database server after
fetching every record. Rather, we will like to return only after all the records have been processed.
It also means that the intermediate state of the computation should be saved within the address
space of the database server. We illustrate by converting the loosely-coupled application in Figure 1
into a tightly-one and then give the general methodology. The tightly-coupled version is shown in
Figure 2.

We �rst allocate space in the address space of the database server to maintain intermediate
state of the computation. The user-de�ned function allocSpace() allocates work-area for saving
state and initializes it. In this case, this function allocates an integer array of MAXSIZE elements
to maintain counts, initializes all the elements of this array to zero, and returns the address of the
array. This function is executed by the SQL statement in line 2 of Figure 2. We want this function
to be executed only once. Therefore, the select statement has been de�ned over a one-record

4

table1. The result of the statement on line 2 will be that the lone record from this table will be
selected and the allocSpace() function will be executed for this record as this function appears
in the select list. Consequently, the space for the array will be allocated and a pointer to this
space is returned in the application variable blob. Admittedly, the value in variable blob has no
meaning in the address space of the application program. However, this value is never referenced
in the application program, but passed as input argument in the next SQL statement to another
user-de�ned function.

The user-de�ned function updateCount() gets the starting address of work-area and the values of
columns in the sales table as input arguments, and updates information in the work-area depending
on the column values in the input record. Importantly, the function always returns zero. This
function is referenced in the where clause of the SQL statement on line 3, the selection condition
being that the value returned by the function is 1. This condition will always be false. Therefore,
this SQL statement never returns a record. However, the user-de�ned function is applied to each
record in the sales table and the count array is updated. We thus have been able to push the
application program logic into the database system, avoiding copying and context switches. When
the result set of select statement has at most one record, we do not require cursor mechanism to
retrieve the result. Thus, the while-loop in lines 4-8 of Figure 1 of the loosely-coupled algorithm
has been transformed into one SQL statement.

The application program cannot access the address space allocated by allocSpace() in the
database server. After we �nish scanning the sales table, therefore, we bring the results from
the database server through the user-de�ned function getResult. We again reference this function
in the select list of the SQL statement in line 4 over a one-record temporary table. Finally, we
deallocate the work-area allocated in database server with another user-de�ned function dealloc-
Space() before the application program exits.

2.5. General Methodology

Our methodology for developing tightly-coupled applications on DB2/CS has the following
ingredients:

� Employ two classes of user-de�ned functions:

{ those that are executed a few times (usually once) independent of the number of records
in the table;

{ those that are executed once for each selected record.

The former are used for allocating and deallocating work-area in the address space of the
system and copying results from the database address to the application address space. The
latter do computations on the selected records in the database address space, using the work-
area allocated earlier.

� To execute a user-de�ned function once, reference it in the select list of a SQL select

statement over a one-record table. Create this temporary one-record dynamically by using
the construct (value(1)) as onerecord in the from clause.

1The onerecord table does not need to be a permanent table. Rather, this table can be dynamically created by
changing the from clause to:

from (values(1)) as onerecord

For brevity, we omit this detail in all our examples.

5

� To execute a user-de�ned function once for each selected record without ping-ponging between
the database address space and the application address, have the function always return 0.
De�ne the SQL select statement over the table whose records are to be processed, and add
a condition of the form udf() = 1 in the where clause. If there are other conditions in the
where clause, those conditions must be evaluated last because the user-de�ned function must
be applied only on the selected records.

� If a computation involves using user-de�ned functions in multiple SQL select statements, they
share data-structures by creating handles in the work-area initially created.

Speci�cally, our approach consists of the following steps:

� Allocate work-area in the database address space utilizing a user-de�ned function in a SQL
select statement over a one-record table. A handle to this work-area is returned in the
application address space using the into clause.

� Setup iteration over the table containing data records and reference the user-de�ned func-
tion encapsulating the desired computation in the where clause of the select statement as
discussed above. Pass the handle to the work-area as an input argument to this user-de�ned
function. If the computation requires more than one user-de�ned function (and hence multi-
ple select statements), have the previous one leave a handle to the desired data structures
in the work-area.

� Copy the results from the work-area in the database address space into the application address
space using another user-de�ned function in a SQL select statement over a one-record table.

� Use another user-de�ned function over a one-record table in a SQL select statement to
deallocate the work-area.

We can cast our approach in the object-oriented programming paradigm. We can think of
allocSpace() as a constructor for an object whose data members store the state of the application
program in the address space of database system. A collection of member functions (e.g. up-
dateCount() and getResult()) save and query the state of the application program. The function
deallocSpace() can be thought of as the destructor for the object.

Note that our approach does not require changes to the database software. We simply utilize
user-de�ned functions in SQL in a novel way. In e�ect, we are using SQL to orchestrate the
execution of the application logic within database system, using SQL also as an inter-process
communication mechanism. This use of the user-de�ned functions is quite di�erent from the earlier
usage, such as for applying a complex selection predicate on record-by-record basis with no residue
between executions on two records [9] [12], or for integrating specialized data managers with the
relational database systems [6].

3. A Case Study

To validate our methodology, we tightly-coupled a data mining application to DB2/CS and
measured its performance against the loosely-coupled implementation. In this section, we report
our experiences as a case study.

Datamining (also called knowledge discovery in databases) is the e�cient discovery of previously
unknown patterns in large databases, and is emerging as a major application area for databases [5]

6

procedure AprioriAlg()
begin

1. L1 := ffrequent 1-itemsetsg;
2. for (k := 2; Lk�1 6= ;; k++) do f
3. Ck := apriori-gen(Lk�1); // New candidates
4. forall transactions t 2 D do f
5. forall candidates c 2 Ck contained in t do
6. c:count++;
7. g
8. Lk := fc 2 Ck j c:count � min-supportg
9. g
10. Answer :=

S
k Lk ;

end

Figure 3: Apriori Algorithm

[13]. Decision support applications for retail organizations are the major drivers of this technology.
Almost all large retail organizations collect and store massive amount of point-of-sales data, referred
to as the basket data. A record in such a database table consists of a transaction id and an item
id. All the items belonging to the same transaction id represent a customer transaction. The input
data to the table comes naturally sorted by transaction id.

We consider speci�cally the problem of mining association rules over basket data, introduced in
[1]. An association rule is an expression X =) Y , where X and Y are sets of items. The intuitive
meaning of such a rule is that transactions which contain X tend to contain Y . An example of
such a rule might be that 98% of customers who purchase tires and automobile accessories also
get automotive services. We use the Apriori algorithm in [2] for our case study. We give both
loosely-coupled and tightly-coupled implementation of this algorithm over DB2/CS and present
performance comparisons using several real-life datasets.

3.1. Overview of the Apriori Algorithm

The problem of mining association rules is decomposed into two subproblems [1]: i) �nd all
frequent itemsets that occur in a speci�ed minimum number of transaction, called min-support; ii)
use the frequent itemsets to generate the desired rules. We only consider the �rst subproblem as
the database is only accessed during this phase.

The Apriori algorithm for �nding all frequent itemsets is given in Figure 3. It makes multiple
passes over the database. In the �rst pass, the algorithm simply counts item occurrences to de-
termine the frequent 1-itemsets (itemsets with 1 item). A subsequent pass, say pass k, consists of
two phases. First, the frequent itemsets Lk�1 (the set of all frequent (k�1)-itemsets) found in the
(k�1)th pass are used to generate the candidate itemsets Ck , using the apriori-gen() function. This
function �rst joins Lk�1 with Lk�1, the joining condition being that the lexicographically ordered
�rst k � 2 items are the same. Next, it deletes all those itemsets from the join result who have
some (k�1)-subset that is not in Lk�1, yielding Ck . For example, let L3 be ff1 2 3g, f1 2 4g, f1
3 4g, f1 3 5g, f2 3 4gg. After the join step, C4 will be ff1 2 3 4g, f1 3 4 5g g. The prune step
will delete the itemset f1 3 4 5g because the itemset f1 4 5g is not in L3. We will then be left with

7

only f1 2 3 4g in C4.

The algorithm now scans the database. For each transaction, it determines which of the candi-
dates in Ck are contained in the transaction using a hash-tree data structure and increments their
count. At the end of the pass, Ck is examined to determine which of the candidates are frequent,
yielding Lk . The algorithm terminates when Lk becomes empty. See [1] for details of the algorithm.

3.2. Loosely Coupled Integration

Figure 4 shows the sketch of a loosely-coupled implementation of the Apriori algorithm. Lines 4
through 13 determine the frequent 1-itemsets corresponding to line 1 in Figure 3. We open a cursor
over the sales table, fetch one record at a time from the database to the application program, and
increment count for items found in each record. The count array is maintained in the application
program. Note that there is one context switch for every record in the sales table. At the end of
the loop, the count array is scanned to determine the frequent 1-itemsets.

Lines 14 through 33 contain processing for subsequent passes. These lines correspond to lines 2
through 9 in Figure 3. In line 15, we generate candidates in the application program. The database
is now scanned to determine the count for each of the candidates. We open a cursor over the
sales table and fetch one record at a time from the database process to the application process.
After all the records corresponding to a transaction have been retrieved, we determine which of the
candidates are contained in the transaction and increment their counts. Finally, we determine in
the application which of the candidates are frequent.

3.3. Tightly Coupled Integration

We give a tightly-coupled implementation of the Apriori algorithm in Figure 5 using our method-
ology. The statement in line 2 creates work-area in the database address space for intermediate
results. The handle to this work-area is returned in the host variable blob. The statement in
line 3 iterates over all the records in the database. However, by making the user-de�ned function
GenL1() always return 0, we force the function GenL1() to be executed in the database process
for every record, avoiding copying and context switching. Line 3 corresponds to the �rst pass of
the algorithm in which frequency of each item is counted and 1-frequent itemsets are determined.
GenL1() receives the handle for the work-area as an input argument and it saves a handle to the
1-frequent itemsets in the work-area before it returns.

Lines 4 through 9 correspond to subsequent passes. First the candidates are generated in the
address space of the database process by the the user-de�ned function aprioriGen(). We accomplish
this by referencing this function in the select list of the SQL statement over onerecord table (hence
ensuring that it is executed once) and providing the handle to the frequent itemsets needed for
generating candidates as input argument to the function. The handle to candidates generated is
saved in the work-area.

Statement on line 7 iterates over the database. Again, by making the function itemCount()
return 0, we ensure that this function is applied to each record, but within the database process.
Handle to the candidates is available in the work-area provided as input argument to itemCount()
and this function counts the the support of candidates. This statement corresponds to the state-
ments in line 16-31 in Figure 4.

Next, the function GenLk() is invoked in the address space of the database process by referencing
it in the SQL statement in line 9 over onerecord table. In the kth pass, this function generates

8

procedure LoosleyCoupledApriori() :
begin
1. exec sql connect to database;
2. exec sql declare cur cursor for

select TID, ITEMID from sales
for read only;

3. exec sql open cur;
4. notDone := true;
5. while notDone do f
6. exec sql fetch cur into :tid, :itemid;
7. if (sqlcode 6= endOfRec) then
8. update counts for each itemid;
9. else
10. notDone := false

11. g
12. exec sql close cur;
13. L1 := ffrequent 1-itemsetsg;
14. for (k := 2; Lk�1 6= ;; k++) do f
15. Ck := apriori-gen(Lk�1); // New candidates
16. exec sql open cur;
17. t := ;; prevTid := �1; notDone := true;
18. while notDone do f
19. exec sql fetch cur into :tid, :itemid;
20 if (sqlcode 6= endOfRec then) f
21. if (tid 6= prevTid and t 6= ;) then f
22. forall candidates c 2 Ck contained in t do
23. c:count++;
24. t := ;; prevTid := tid;
25. g
26. t := t [itemid
27. g
28. else
29. notDone := false;
30. g
31. exec sql close cur;
32. Lk := fc 2 Ck j c:count � min-supportg
33. g
34. Answer :=

S
k
Lk ;

end

Figure 4: Loosely-coupled Apriori Algorithm

9

Procedure TightlyCoupledApriori() :
begin

1. exec sql connect to database;
2. exec sql select allocSpace() into :blob

from onerecord;
3. exec sql select *

from sales
where GenL1(:blob, TID, ITEMID) = 1;

4. notDone := true;
5. while notDone do f
6. exec sql select aprioriGen(:blob) into :blob

from onerecord;
7. exec sql select *

from sales
where itemCount(:blob, TID, ITEMID) = 1;

8. exec sql select GenLk(:blob) into :notDone
from onerecord;

9. g
10. exec sql select getResult(:blob) into :resultBlob

from onerecord;
11. exec sql select deallocSpace(:blob)

from onerecord;
12. Compute Answer using resultBlob;
end

Figure 5: Tightly-coupled Apriori Algorithm

10

frequent itemsets with k items and returns a boolean to indicate whether the size of current Lk is
empty or not. This value is copied into the host variable notDone to determine loop termination
in the application program. After the loop exits, the function getResult() copies out the result
from the database process into the host variable resultBlob in the application process. Finally, the
function deallocSpace() frees up the work-area in the database address space.

We could have combined the functionality of some of the above user-de�ned functions in one
function. We did not do that because we wanted to reuse as much as possible the previous imple-
mentation of the Apriori algorithm with loosely-coupled integration. The result was that we were
able to create the tightly-coupled version with minimal programming e�ort.

3.4. Performance

To assess the e�ectiveness of our approach, we empirically compared the performance of tightly-
coupled and loosely-coupled implementations of the Apriori algorithm. The machine used for the
experiments was a IBM RS/6000 250 workstation with a CPU clock rate of 80 MHz, 128 MB of
main memory, and running AIX 3.2.5. The database system used was DB2/CS Version 2.1 that
supports user-de�ned functions. The experiments were performed in a con�guration in which the
application client and the database server were running on the same machine.

Six real-life customer datasets were used in the experiment. These datasets were obtained from
department stores, supermarkets, and mail-order companies. Table 1 summarizes the characteristics
of these datasets.

Table 1: Characteristics of the Datasets
Name # of Size of Size of Size of Avg. # of Items # of

Name Tuples Tuple Tid Itemid per Transaction Items

Data Set 1 115192 8 5 3 2.45 58

Data Set 2 500000 86 30 13 4.84 47838

Data Set 3 662210 64 25 7 2.09 26412

Data Set 4 512596 23 11 12 4.24 51440

Data Set 5 2600000 25 15 5 2.62 15499

Data Set 6 2600000 26 16 10 1.64 56358

For each data set, we measured the execution times of both loosely-coupled and tightly-coupled
implementations of the Apriori algorithm for di�erent support levels. When measuring running
times for the loosely-coupled version, we used row blocking that allows a group of rows to be
returned to an application in response to a fetch request [7]. It reduces the overhead of the
database manager as a block of rows are retrieved in a single operation.

Figure 6 summarizes the experimental results. The x-axis is the minimum support used for
each experiment. The y-axis is the ratio of execution time of the loosely-coupled mode to the
execution-time of the tightly-coupled mode. The minimum supports for each data set were chosen
to allow a reasonable number of passes and frequent itemsets.

We see that in all cases, tight-coupling gives more than two fold performance advantage over
loose-coupling. We would like to mention that work is underway to improve the performance of the
implementation of the user-de�ned functions in DB2. The tightly-coupled implementation would
directly bene�t from any performance gains from this e�ort.

11

Data Set 1 Data Set 2

0

0.5

1

1.5

2

2.5

3

3.5

4

0.10.050.0250.01

R
e
la

tiv
e
 S

p
e
e
d

Minimum Support

Loosely-Coupled Mode
Tightly-Coupled Mode

0

0.5

1

1.5

2

2.5

3

3.5

4

0.20.10.050.025

R
e
la

tiv
e
 S

p
e
e
d

Minimum Support

Loosely-Coupled Mode
Tightly-Coupled Mode

Data Set 3 Data Set 4

0

0.5

1

1.5

2

2.5

3

3.5

4

0.10.050.0250.01

R
e
la

tiv
e
 S

p
e
e
d

Minimum Support

Loosely-Coupled Mode
Tightly-Coupled Mode

0

0.5

1

1.5

2

2.5

3

3.5

4

0.10.050.0250.01

R
e
la

tiv
e
 S

p
e
e
d

Minimum Support

Loosely-Coupled Mode
Tightly-Coupled Mode

Data Set 5 Data Set 6

0

0.5

1

1.5

2

2.5

3

3.5

4

0.10.050.0250.01

R
e
la

tiv
e
 S

p
e
e
d

Minimum Support

Loosely-Coupled Mode
Tightly-Coupled Mode

0

0.5

1

1.5

2

2.5

3

3.5

4

0.20.150.10.05

R
e
la

tiv
e
 S

p
e
e
d

Minimum Support

Loosely-Coupled Mode
Tightly-Coupled Mode

Figure 6: Relative execution speed of the loosely-coupled and tightly-coupled implementations of
the Apriori algorithm

12

4. Summary

We considered the performance degradation due to copying and context switches when inte-
grating a data-intensive application to the IBM DB2/CS relational database system using the
conventional loosely-coupled integration paradigm. We proposed a methodology for tightly cou-
pling applications to DB2/CS to build high-performance applications. Our approach does not
require changes to the DB2/CS software, but simply utilizes the user-de�ned functions in a novel
way. We validated our technique by converting a loosely-coupled data mining application into a
tightly-coupled one. Not only did we empirically observe a nearly two-fold performance improve-
ment, we found that the programming e�ort was quite minimal and we were able to reuse most the
existing code. This application is now being �eld-deployed.

Our fond hope is that the designers of high-performance, decision-support applications on
DB2/CS will bene�t from this methodology. The database system designers may also take cues
from this methodology while designing native support for emerging data-intensive decision-support
applications.

Acknowledgments. Experiments by Andreas Arning, Toni Bollinger, and Ramakrishnan Srikant
brought to our attention the performance penalty of loosely-coupled integration. John McPherson,
Pat Selinger, and Don Haderle pointed us to the user-de�ned functions as a possible way of attacking
the performance problem. Don Chamberlin, Guy Lohman, Hamid Pirahesh, Berthold Reinwald,
Amit Somani. and Geroge Wilson explained several subtleties of the user-de�ned functions and
stored procedures in DB2/CS. Bob Yost helped us in obtaining the latest versions of DB2/CS.
Finally, the generous help and suggestions of Ramakrishnan Srikant were invaluable.

References.

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between sets
of items in large databases. In Proc. of the ACM SIGMOD Conference on Management of
Data, pages 207{216, Washington, D.C., May 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. In
Proc. of the 20th Int'l Conference on Very Large Databases, Santiago, Chile, September 1994.

[3] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The object-
oriented database system manifesto. In M. Stonebraker, editor, Readings in Database Systems,
pages 946{954. Morgan Kaufmann, 1994.

[4] M. P. Atkinson and P. Buneman. Types and persistence in database programming languages.
ACM Computing Surveys, 19(2), June 1987.

[5] Gartner Group. Data mining: The next generation of business intelligence? ATG Research
Note T-517-246, Gartner Group Inc., Stamform, CT, March 1994.

[6] W. Hasan, M. Heytens, C. Kolovson, M.-A. Neimat, S. Potamianos, and D. Schneider. Papyrus
GIS demonstration. In Proc. of the ACM-SIGMOD Int'l Conference on the Management of
Data, Washington, D.C., June 1993.

[7] IBM. DB2 Application Programming Guide Version 2, 1995.

[8] IBM. DB2 SQL Reference for Common Servers Version 2, 1995.

13

[9] G. Lohman, B. Lindsay, H. Pirahesh, and K. B. Schiefer. Extensions to starburst: Objects,
types, functions, and rules. Communications of the ACM, 34(10), October 1991.

[10] Montage. Montage User's Guide, March 1994.

[11] Oracle. Oracle RDBMS Database Administrator's Guide Volumes I, II (Version 7.0), May
1992.

[12] M. Stonebraker and L. A. Rowe. The design of postgres. In Proc. of the ACM-SIGMOD Int'l
Conference on the Management of Data, Washington, D.C., May 1986.

[13] Business Week. Database marketing, September 1994.

14

