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Introduction

The goal of the Quest project at the IBM Almaden
Research center is to develop technology to enable a
new breed of data-intensive decision-support applica-
tions. This paper is a capsule summary of the current
functionality and architecture of the Quest data min-
ing System.
Our overall approach has been to identify basic data

mining operations that cut across applications and
develop fast, scalable algorithms for their execution
(Agrawal, Imielinski, & Swami 1993a). We wanted our
algorithms to:

� discover patterns in very large databases, rather
than simply verify that a pattern exists;

� have a completeness property that guarantees that
all patterns of certain types have been discovered;

� have high performance and near-linear scaling on
very large (multiple gigabytes) real-life databases.

We discuss the operations of discovering associ-
ation rules, sequential patterns, time-series cluster-
ing, classi�cation, and incremental mining. Due
to space limitation, we only give highlights and
point the reader to the relevant information for de-
tails. Unfortunately, for the same reason, we have
not been able to include a discussion of the re-
lated work. Besides proceedings of the KDD, SIG-
MOD, VLDB, and Data Engineering Conferences,
other excellent sources of information about the data
mining systems and algorithms include (Piatetsky-
Shapiro & Frawley 1991) (Fayyad et al. 1995).
Further information about Quest can be obtained
from http://www.almaden.ibm.com/cs/quest. IBM
is making the Quest technology commercially avail-
able through the data mining product, IBM Intelligent
Miner.

�Current members of the Quest group.

Association Rules

We introduced the problem of discovering association
rules in (Agrawal, Imielinski, & Swami 1993b). Given
a set of transactions, where each transaction is a set
of literals (called items), an association rule is an ex-
pression of the form X ) Y , where X and Y are sets
of items. The intuitive meaning of such a rule is that
transactions of the database which contain X tend to
contain Y . An example of an association rule is: \30%
of transactions that contain beer also contain diapers;
2% of all transactions contain both of these items".
Here 30% is called the con�dence of the rule, and 2%
the support of the rule. The problem is to �nd all
association rules that satisfy user-speci�ed minimum
support and minimum con�dence constraints. Appli-
cations include discovering a�nities for market bas-
ket analysis and cross-marketing, catalog design, loss-
leader analysis, store layout, customer segmentation
based on buying patterns, etc. See (Nearhos, Roth-
man, & Viveros 1996) for a case study of a successful
application in health insurance.

Apriori Algorithm

The problem of mining association rules is decomposed
into two subproblems (Agrawal, Imielinski, & Swami
1993b):

� Find all combinations of items that have transaction
support above minimum support. Call those combi-
nations frequent itemsets.

� Use the frequent itemsets to generate the desired
rules. The general idea is that if, say, ABCD and
AB are frequent itemsets, then we can determine if
the rule AB ) CD holds by computing the ratio r =
support(ABCD)/support(AB). The rule holds only
if r � minimum con�dence. Note that the rule will
have minimum support because ABCD is frequent.

The Apriori algorithm (Agrawal & Srikant 1994)
used in Quest for �nding all frequent itemsets is



procedure AprioriAlg()
begin

L1 := ffrequent 1-itemsetsg;
for ( k := 2; Lk�1 6= ;; k++ ) do f

Ck := apriori-gen(Lk�1 ); // New candidates
forall transactions t in the dataset do f

forall candidates c 2 Ck contained in t do
c:count++;

g
Lk := fc 2 Ck j c:count � min-supportg

g
Answer :=

S
k
Lk;

end

Figure 1: Apriori Algorithm
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Figure 2: Example of a Taxonomy

given in Figure 1. It makes multiple passes over the
database. In the �rst pass, the algorithm simply counts
item occurrences to determine the frequent 1-itemsets
(itemsets with 1 item). A subsequent pass, say pass
k, consists of two phases. First, the frequent itemsets
Lk�1 (the set of all frequent (k�1)-itemsets) found in
the (k�1)th pass are used to generate the candidate
itemsets Ck, using the apriori-gen() function. This
function �rst joins Lk�1 with Lk�1, the joining condi-
tion being that the lexicographically ordered �rst k�2
items are the same. Next, it deletes all those itemsets
from the join result that have some (k�1)-subset that
is not in Lk�1, yielding Ck. For example, let L3 be ff1
2 3g, f1 2 4g, f1 3 4g, f1 3 5g, f2 3 4gg. After the join
step, C4 will be ff1 2 3 4g, f1 3 4 5g g. The prune step
will delete the itemset f1 3 4 5g because the itemset
f1 4 5g is not in L3. We will then be left with only f1
2 3 4g in C4.

The algorithm now scans the database. For each
transaction, it determines which of the candidates in
Ck are contained in the transaction using a hash-tree
data structure and increments the count of those can-
didates. At the end of the pass, Ck is examined to
determine which of the candidates are frequent, yield-
ing Lk. The algorithm terminates when Lk becomes
empty.

Generalizations

Very often, taxonomies (is-a hierarchies) over the items
are available. An example of a taxonomy is shown
in Figure 2: this taxonomy says that Jacket is-a
Outerwear, Ski Pants is-a Outerwear, Outerwear is-
a Clothes, etc. Users are often interested in generating
rules that span di�erent levels of the taxonomy. For
example, we may infer a rule that people who buy Out-
erwear tend to buy Hiking Boots from the fact that
people bought Jackets with Hiking Boots and and Ski
Pants with Hiking Boots. However, the support for
the rule \Outerwear ) Hiking Boots" may not be the
sum of the supports for the rules \Jackets ) Hiking
Boots" and \Ski Pants ) Hiking Boots" since some
people may have bought Jackets, Ski Pants and Hik-
ing Boots in the same transaction. Also, \Outerwear
) Hiking Boots" may be a valid rule, while \Jackets
) Hiking Boots" and \Clothes ) Hiking Boots" may
not. The former may not have minimum support, and
the latter may not have minimum con�dence. This
generalization of association rules and the algorithm
used in Quest for �nding such rules are described in
(Srikant & Agrawal 1995).
Another generalization of the problem of mining as-

sociation rules is to discover rules in data containing
both quantitative and categorical attributes. An ex-
ample of such a \quantitative" association rule might
be that \10% of married people between age 50 and
60 have at least 2 cars". We deal with quantitative at-
tributes by �ne-partitioning the values of the attribute
and then combining adjacent partitions as necessary.
We also have measures of partial completeness that
quantify the information loss due to partitioning. This
generalization and the algorithm for �nding such rules
used in Quest are presented in (Srikant & Agrawal
1996a).
One potential problem that users experience in

applying association rules to real problems is that
many uninteresting or redundant rules may be gen-
erated along with the interesting rules. In (Srikant
& Agrawal 1995) (further generalized in (Srikant &
Agrawal 1996a)), a \greater-than-expected-value" in-
terest measure was introduced, which is used in Quest
to prune redundant rules.

Sequential Patterns

We introduced the problem of discovering sequential
patterns in (Agrawal & Srikant 1995). The input data
is a set of sequences, called data-sequences. Each data-
sequence is a list of transactions, where each trans-
action is a sets of items (literals). Typically there is
a transaction-time associated with each transaction.
A sequential pattern also consists of a list of sets of



items. The problem is to �nd all sequential patterns
with a user-speci�ed minimum support, where the sup-
port of a sequential pattern is the percentage of data-
sequences that contain the pattern.
For example, in the database of a book-club, each

data-sequence may correspond to all book selections
of a customer, and each transaction to the books se-
lected by the customer in one order. A sequential pat-
tern might be \5% of customers bought `Foundation',
then `Foundation and Empire', and then `Second Foun-
dation' ". The data-sequence corresponding to a cus-
tomer who bought some other books in between these
books still contains this sequential pattern; the data-
sequence may also have other books in the same trans-
action as one of the books in the pattern. Elements of
a sequential pattern can be sets of items, for example,
\ `Foundation' and `Ringworld', followed by `Founda-
tion and Empire' and `Ringworld Engineers', followed
by `Second Foundation'". However, all the items in an
element of a sequential pattern must be present in a
single transaction for the data-sequence to support the
pattern.
This problem was initiallymotivated by applications

in the retailing industry, including attached mailing,
add-on sales, and customer satisfaction. But the re-
sults apply to many scienti�c and business domains.
For instance, in the medical domain, a data-sequence
may correspond to the symptoms or diseases of a pa-
tient, with a transaction corresponding to the symp-
toms exhibited or diseases diagnosed during a visit to
the doctor. The patterns discovered using this data
could be used in disease research to help identify symp-
toms/diseases that precede certain diseases.

Generalizations

The basic de�nition of sequential patterns was gen-
eralized in (Srikant & Agrawal 1996b) to incorporate
following features:

� Introduction of time constraints. Users often
want to specify maximum and/or minimum time
gaps between adjacent elements of the sequential
pattern. For example, a book club probably does
not care if someone bought \Foundation", followed
by \Foundation and Empire" three years later; they
may want to specify that a customer should support
a sequential pattern only if adjacent elements occur
within a speci�ed time interval, say three months.

� Flexible de�nition of a transaction. For many
applications, it is immaterial if items in an element
of a sequential pattern were present in two di�er-
ent transactions, as long as the transaction-times of
those transactions are within some small time win-
dow. That is, each element of the pattern can be

contained in the union of the items bought in a set
of transactions, as long as the di�erence between
the maximumand minimumtransaction-times is less
than the size of a sliding time window. For exam-
ple, if the book-club speci�es a time window of a
week, a customer who ordered the \Foundation" on
Monday, \Ringworld" on Saturday, and then \Foun-
dation and Empire" and \Ringworld Engineers" in
a single order a few weeks later would still support
the pattern \ `Foundation' and `Ringworld', followed
by `Foundation and Empire' and `Ringworld Engi-
neers' ".

In addition, if there were taxonomies (is-a hierar-
chies) over the items in the data, the sequential pat-
terns could now include items across di�erent levels of
the taxonomy.
See (Srikant & Agrawal 1996b) for a description of

the GSP algorithm used in Quest for �nding such gen-
eralized sequential patterns.

Time-Series Clustering

Time-series data constitute a large portion of data
stored in computers. The capability to �nd time-series
(or portions thereof) that are \similar" to a given time-
series or to be able to �nd groups of similar time-series
has several applications. Examples include identify-
ing companies with similar pattern of growth, �nd-
ing products with similar selling patterns, discovering
stocks with similar price movements, determining por-
tions of seismic waves that are not similar to spot ge-
ological irregularities, etc.
We introduced a model of time-series similarity in

(Agrawal et al. 1995a). In this model, two time-series
are considered to be similar if they have enough non-
overlapping time-ordered pieces (subseries) that are
similar. The amplitude of one of the two time-series
is allowed to be scaled by any suitable amount and
its o�set adjusted appropriately before matching the
other series. Two subsequences are considered similar
if one lies within an envelope of � width around the
other, ignoring outliers. The matching subseries need
not be aligned along the time axis. Figure 3 captures
the intuition underlying our similarity model.
The matching system used in Quest is described in

(Agrawal et al. 1995a). It consists of three main parts:
(i) \atomic" subseries matching, (ii) long subseries
matching, and (iii) series matching. The basic idea is
to create a fast, indexable data structure using small,
atomic subseries that represents all the series up to
amplitude scaling and o�set, and �nd atomic matches
by doing a self-join on this structure. The initial proto-
type used the R+-tree for this representation. A faster
data structure described in (Shim, Srikant, & Agrawal
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Figure 3: Illustration of Time-series matching

1996) is now used in its place. The second stage em-
ploys a fast algorithm for stitching atomic matches to
form long subseries matches, allowing non-matching
gaps to exist between the atomic matches. The third
stage linearly orders the subseries matches found in the
second stage to determine if enough similar pieces exist
in the two time-series. In every stage, the system al-
lows for the 
exibility of user/system-de�ned matching
parameters without sacri�cing e�ciency.

Classi�cation

Classi�cation is a well recognized data mining oper-
ation and it has been studied extensively in statis-
tics and machine learning literature (Weiss & Ku-
likowski 1991). However, most of the current classi-
�cation algorithms have the restriction that the train-
ing data should �t in memory. In data mining appli-
cations, very large training sets with several million
examples are common. We therefore wanted to de-
sign a classi�er that scales well and can handle train-
ing data of this magnitude (without resorting to sam-
pling/partitioning). The ability to classify larger train-
ing data can also lead to improved classi�cation accu-
racy.
SLIQ (Supervised Learning In Quest), described in

(Mehta, Agrawal, & Rissanen 1996), is a decision tree
classi�er, designed to classify large training data. It
uses a pre-sorting technique in the tree-growth phase.
This sorting procedure is integrated with a breadth-
�rst tree growing strategy to enable classi�cation of
disk-resident datasets. In the pruning phase, it uses a
pruning strategy based on the Minimum Description

Length (MDL) principle. The net result of these tech-
niques is that, given training data that can be han-
dled by another decision tree classi�er, SLIQ exhibits
the same accuracy characteristics, but executes much
faster and produces smaller trees. Moreover, SLIQ
can potentially obtain higher accuracies by classifying
larger (disk-resident) training datasets which cannot
be handled by other classi�ers.
While SLIQ was the �rst classi�er to address sev-

eral issues in building a fast scalable classi�er and
it gracefully handles disk-resident data that are too
large to �t in memory, it still requires some infor-
mation to stay memory-resident. Furthermore, this
information grows in direct proportion to the num-
ber of input records, putting a hard-limit on the
size of training data. We have recently designed a
new decision-tree-based classi�cation algorithm, called
SPRINT (Scalable PaRallelizable INduction of deci-
sion Trees) that for the �rst time removes all of the
memory restrictions, and is fast and scalable and eas-
ily parallelizable. The algorithm, presented in (Shafer,
Agrawal, & Mehta 1996), can classify data sets irre-
spective of the number of classes, attributes, and ex-
amples (records), making it an attractive tool for data
mining.

Incremental Mining

As the data mining technology is applied in the pro-
duction mode, the need for incremental/active mining
arises (Agrawal & Psaila 1995). Rather than applying
a mining algorithm to the whole data, the data is �rst
partitioned according to time periods. The granularity



of the time period is application-dependent. The min-
ing algorithm is now applied to each of the partitioned
data sets and patterns are obtained for each time pe-
riod. These patterns are collected into a database. In
this database, each statistical parameter of a pattern
will have a sequence of values, called the history of the
parameter for that pattern. We can now query the
database using predicates that select patterns based
on the shape of the history of some or all parameters.
A shape query language is presented for this purpose
in (Agrawal et al. 1995b).
The user can specify triggers over the database in

which the triggering condition is a query on the shape
of the history. As fresh data comes in for the current
time period, the mining algorithm is run over this data,
and the database is updated with the generated pat-
terns. This update causes the histories of the patterns
to be extended. This, in turn, may cause the trigger-
ing condition to be satis�ed for some patterns and the
corresponding actions to be executed.
Such active systems can be used, for instance, to

build early warning systems for spotting trends in the
retail industry. For example, if we were mining associa-
tion rules, we would have histories for the support and
con�dence of each rule. Following the promotion for
an item X, the user may specify a noti�cation trigger
on the rule X ) Y ; the triggering condition being that
the support history remains stable, but the con�dence
history takes the shape of a downward ramp. Firing
of this trigger will signify that if the goal of promoting
X was to drag the sale of Y , it was not ful�lled. The
loyalists continued to buy X and Y together, but the
new buyers cherry-picked X.

Parallelism

Given that mining can involve very large amounts of
data, parallel algorithms are needed. Quest algorithms
have been parallelized to run on IBM's shared-nothing
multiprocessor SP2. The parallel implementation of
the mining of association rules is described in (Agrawal
& Shafer 1996). This implementation shows linear
scale-up for association rules. Mining of sequential
patterns is also parallelized using similar techniques.
We have also parallelized the SPRINT classi�cation
algorithm (Shafer, Agrawal, & Mehta 1996), where
all processors work together to build a single classi-
�cation model. Measurements from these implementa-
tions show excellent scaleup, speedup and sizeup char-
acteristics.

System Architecture

Figure 4 shows the system architecture of the Quest
system. The mining algorithms run on the server close
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Figure 4: The Quest System Architecture

to the data source. Users interact with the system
through a GUI that can run on the same work-station
or on a di�erent client machine. There is an open API
using which the user can optionally import results of
any mining operation into software of choice.

An interesting aspect of the Quest architecture is
its I/O architecture. There is a standard stream in-
terface de�ned for all accesses to input, insulating the
algorithm code from data repository details, which are
encapsulated in a data access API. Thus, it is easy to
add new data repository types to the Quest system.

The Quest system runs both on AIX and MVS plat-
forms, against data in 
at �les as well as DB2 family
of database products. Databases can be accessed in
a loosely-coupled mode using dynamic SQL. However,
for better performance, it is possible to run the min-
ing algorithm in a tightly-coupled mode described in
(Agrawal & Shim 1996).

Future Directions

We plan to continue on the current path of identify-
ing new data mining operations and developing fast
algorithms for their execution. Two operations that
we are currently focusing on are deviation detection
(Arning & Agrawal 1996) and segmentation of high-
dimensional data. We are also interested in mining
data types other than structured data, such as text,
particularly in the context of the world-wide web. Fi-
nally, we are also exploring the interaction between
discovery-driven and veri�cation-driven data mining,
especially in OLAP databases.
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