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ABSTRACT

Clustering algorithms typically operate on a feature vector
representation of the data and find clusters that are compact
with respect to an assumed (dis)similarity measure between
the data points in feature space. This makes the type of clus-
ters identified highly dependent on the assumed similarity
measure. Building on recent work in this area, we formally
define a class of spatially varying dissimilarity measures and
propose algorithms to learn the dissimilarity measure auto-
matically from the data. The idea is to identify clusters that
are compact with respect to the unknown spatially vary-
ing dissimilarity measure. Our experiments show that the
proposed algorithms are more stable and achieve better ac-
curacy on various textual data sets when compared with
similar algorithms proposed in the literature.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms
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1. INTRODUCTION

Clustering plays a major role in data mining as a tool
to discover structure in data. Object clustering algorithms
operate on a feature vector representation of the data and
find clusters that are compact with respect to an assumed
(dis)similarity measure between the data points in feature
space. As a consequence, the nature of clusters identified by
a clustering algorithm is highly dependent on the assumed
similarity measure. The most commonly used dissimilarity
measure, namely the Euclidean metric, assumes that the dis-
similarity measure is isotropic and spatially invariant, and
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it is effective only when the clusters are roughly spherical
and all of them have approximately the same size, which is
rarely the case in practice [8]. The problem of finding non-
spherical clusters is often addressed by utilizing a feature
weighting technique. These techniques discover a single set
of weights such that relevant features are given more impor-
tance than irrelevant features. However, in practice, each
cluster may have a different set of relevant features. We
consider Spatially Varying Dissimilarity (SVaD) measures
to address this problem.

Diday et. al. [4] proposed the adaptive distance dynamic
clusters (ADDC) algorithm in this vain. A fuzzified version
of ADDC, popularly known as the Gustafson-Kessel (GK)
algorithm [7] uses a dynamically updated covariance matrix
so that each cluster can have its own norm matrix. These al-
gorithms can deal with hyperelliposoidal clusters of various
sizes and orientations. The EM algorithm [2] with Gaussian
probability distributions can also be used to achieve similar
results. However, the above algorithms are computationally
expensive for high-dimensional data since they invert covari-
ance matrices in every iteration. Moreover, matrix inversion
can be unstable when the data is sparse in relation to the
dimensionality.

One possible solution to the problems of high computa-
tion and instability arising out of using covariance matrices
is to force the matrices to be diagonal, which amounts to
weighting each feature differently in different clusters. While
this restricts the dissimilarity measures to have axis parallel
isometry, the weights also provide a simple interpretation of
the clusters in terms of relevant features, which is important
in knowledge discovery. Examples of such algorithms are
SCAD and Fuzzy-SKWIC [5, 6], which perform fuzzy clus-
tering of data while simultaneously finding feature weights
in individual clusters.

In this paper, we generalize the idea of the feature weight-
ing approach to define a class of spatially varying dissimi-
larity measures and propose algorithms that learn the dis-
similarity measure automatically from the given data while
performing the clustering. The idea is to identify clusters
inherent in the data that are compact with respect to the
unknown spatially varying dissimilarity measure. We com-
pare the proposed algorithms with a diagonal version of GK
(DGK) and a crisp version of SCAD (CSCAD) on a variety
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The rest of the paper is organized as follows. In the next
section, we define a general class of dissimilarity measures



and formulate two objective functions based on them. In
Section 3, we derive learning algorithms that optimize the
objective functions. We present an experimental study of
the proposed algorithms in Section 4. We compare the per-
formance of the proposed algorithms with that of DGK and
CSCAD. These two algorithms are explained in Appendix A.
Finally, we summarize our contributions and conclude with
some future directions in Section 5.

2. SPATIALLY VARIANT DISSIMILARITY
(SVAD) MEASURES

We first define a general class of dissimilarity measures
and formulate a few objective functions in terms of the given
data set. Optimization of the objective functions would re-
sult in learning the underlying dissimilarity measure.

2.1 SVaD Measures

In the following definition, we generalize the concept of
dissimilarity measures in which the weights associated with
features change over feature space.

DEFINITION 2.1 We define the measure of dissimilarity of
x from y' to be a weighted sum of M dissimilarity mea-
sures between x and y where the values of the weights de-
pend on the region from which the dissimilarity is being mea-
sured. Let P = {Ru1,...,Rk} be a collection of K regions
that partition the feature space, and wi,wa2, ..., and wi be
the weights associated with R1, R, ..., and Ry, respectively.
Let g1,92, ..., and gu be M dissimilarity measures. Then,
eachwj,j=1,..., K, is an M-dimensional vector where its
l-th component, wj; is associated with g;. Let W denote the
K-tuple (w1, ...,wk) and let v be a real number. Then, the
dissimilarity of © from y is given by:

M
fw(z,y) 2 whalx,y), ify € R;. (1)

=1

We refer to fw as a Spatially Variant Dissimilarity (SVaD)
measure.

Note that fw need not be symmetric even if g; are sym-
metric. Hence, fw is not a metric. Moreover, the behavior
of fw depends on the behavior of g;. There are many ways
to define g;. We list two instances of fw .

EXAMPLE 2.1 (Minkowski) Let R be the feature space and
M = d. Let a point x € R be represented as (z1,...,%d).
Then, when g;(x,y) = |z —y:|? fori=1,...,d, andp > 1,
the resulting SVaD measure, i is called Minkowski SVaD
(MSVaD) measure. That is,

d
A - )
f (@,y) 2 whle—ul?, ify € Ry (2)
=1
One may note that when w; = --- = wx and p = 2, £}

is the weighted Euclidean distance. When p = 2, we call f
a Euclidean SVaD (ESVaD) measure and denote it by fi.

We use the phrase “dissimilarity of  from y” rather than
“dissimilarity between & and y” because we consider a gen-
eral situation where the dissimilarity measure depends on
the location of y. As an example of this situation in text
mining, when the dissimilarity is measured from a document
on ‘terrorism’ to a document x, a particular set of keywords
may be weighted heavily whereas when the dissimilarity is
measured from a document on ‘football’ to x, a different set
of keywords may be weighted heavily.

EXAMPLE 2.2 (Cosine) Let the feature space be the set
of points with lo norm equal to one. That is, |||z = 1
for all points x in feature space. Then, when gi(x,y) =
(1/d —zy-y) forl =1,...,d, the resulting SVaD measure
[ is called a Cosine SVaD (CSVaD) measure:

d
fv(@y) 2> wh(l/d—a-w), ify€ R (3)

i=1

In the formulation of the objective function below, we use
a set of parameters to represent the regions Ri, Rz, ..., and
Ri. Let ci1,c2,..., and cx be K points in feature space.
Then y € R; iff

Jw(y,c;) < fw(y,c;) for i # 3. (4)

In the case of ties, y is assigned to the region with the lowest
index. Thus, the K-tuple of points C = (e1,¢a,...,cK) de-
fines a partition in feature space. The partition induced by
the points in C' is similar in nature to a Voronoi tessellation.
We use the notation fw,c whenever we use the set C' to
parameterize the regions used in the dissimilarity measure.

2.2 Objective Function for Clustering

The goal of the present work is to identify the spatially
varying dissimilarity measure and the associated compact
clusters simultaneously. It is worth mentioning here that,
as in the case of any clustering algorithm, the underlying
assumption in this paper is the existence of such a dissimi-
larity measure and clusters for a given data set.

Let ®1,x2, ..., and x, be n given data points. Let K be
a given positive integer. Assuming that C represents the
cluster centers, let us assign each data point x; to a cluster
R; with the closest ¢; as the cluster center?, i.e.,

j= argmlian,c(il?i,Cz)» (5)

Then, the within-cluster dissimilarity is given by
K M
JW.0) =3 3 whaiaie)). (6)

Jj=

1X;eR; I=1

J(W, C) represents the sum of the dissimilarity measures of
all the data points from their closest centroids. The objec-
tive is to find W and C that minimize J(W,C). To avoid
the trivial solution to J(W, C), we consider a normalization
condition on wj, viz.,

M
Z Wy = 1. (7)
=1

Note that even with this condition, J(W,C) has a trivial
solution: wj, = 1 where p = argmin Z.’EieRj gi(zxi, c;),
and the remaining weights are zero. One way to avoid con-
vergence of w; to unit vectors is to impose a regulariza-
tion condition on w;. We consider the following two reg-
ularization measures in this paper: (1) Entropy measure:

Zl]\il wjilog(wj;) and (2) Gini measure: Zlﬂil w3

We use P = {R1, Ra, ..., Rk} to represent the correspond-
ing partition of the data set as well. The intended interpre-
tation (cluster or region) would be evident from the context.



3. ALGORITHMS TO LEARN SVAD MEA-
SURES

The problem of determining the optimal W and C'is sim-
ilar to the traditional clustering problem that is solved by
the K-Means Algorithm (KMA) except for the additional W
matrix. We propose a class of iterative algorithms similar to
KMA. These algorithms start with a random partition of the
data set and iteratively update C', W and P so that J(W, C)
is minimized. These iterative algorithms are instances of Al-
ternating Optimization (AO) algorithms. In [1], it is shown
that AO algorithms converge to a local optimum under some
conditions. We outline the algorithm below before actually
describing how to update C'; W and P in every iteration.

Randomly assign the data points to K clusters.
REPEAT

Update C: Compute the centroid of each cluster c;.

Update W: Compute the w;;Vy, 1.

Update P: Reassign the data points to the clusters.
UNTIL (termination condition is reached).

In the above algorithm, the update of C' depends on the
definition of g;, and the update of W on the regularization
terms. The update of P is done by reassigning the data
points according to (5). Before explaining the computation
of C in every iteration for various g;, we first derive update
equations for W for various regularization measures.

3.1 Update of Weights

While updating weights, we need to find the values of
weights that minimize the objective function for a given C
and P. As mentioned above, we consider the two regular-
ization measures for wj; and derive update equations. If we
consider the entropy regularization with » = 1, the objective
function becomes:

K M
Jent(W,C) = Z Z ijzgl(azi,cj)

J=1T;eR; I=1

K M K M
306> wlog(wi) + YA (Z wj — 1) NG
=1 =1 =1

j=1 =

Note that A; are the Lagrange multipliers corresponding
to the normalization constraints in (7), and d; represent
the relative importance given to the regularization term
relative to the within-cluster dissimilarity. Differentiating
JenT(W,C) with respect to w;; and equating it to zero, we

. -t x,er,; 91(Li,Cj))
obtain wj; = exp — —

J

1) . Solving for

A; by substituting the above value of wj; in (7) and substi-
tuting the value of A; back in the above equation, we obtain

exp <— E:BieRj gi(zxs, Cj)/5j>
221:1 exp (_ ZwieR_i gn (2, Cj)/5j> .

If we consider the Gini measure for regularization with
r = 2, the corresponding w;; that minimizes the objective
function can be shown to be

1/(8j + 2w, er, 9:(®i, ¢;))
ML+ Yx.er, In(Ti; ¢;))) .

In both cases, the updated value of wj; is inversely related

9)

Wy =

(10)

wji =

Algorithm | Update Equations
Acronyms | P C w
EBnt Gy D | )
EsGini (5) | (11) | (10)
CEnt (5) | (12) 9)
CsGini (5) | (12) | (10)

Table 1: Summary of algorithms.

to ZmieR,- gi(zi, cj). This has various interpretations based
on the nature of g;. For example, when we consider the ES-
VaD measure, wj; is inversely related to the variance of I-th
element of the data vectors in the j-th cluster. In other
words, when the variance along a particular dimension is
high in a cluster, then the dimension is less important to
the cluster. This popular heuristic has been used in various
contexts (such as relevance feedback) in the literature [9].
Similarly, when we consider the CSVaD measure, w;; is di-
rectly proportional to the correlation of the j-th dimension
in the [-th cluster.

3.2 Update of Centroids

Learning ESVaD Measures: Substituting the ESVaD mea-
sure in the objective function and solving the first order
necessary conditions, we observe that

1
Cjl = m Z Xl (11)

ZT,ER;

minimizes Jgsvap(W,C).
Learning CSVaD Measures: Let i, = wjiz;, then using
the Cauchy-Swartz inequality, it can be shown that

1 /
= TRy >l (12)

T,ER;

maximizes ZmieRj S wiwacy. Hence, (12) also min-
imizes the objective function when CSVaD is used as the
dissimilarity measure.

Table 1 summarizes the update equations used in vari-
ous algorithms. We refer to this set of algorithms as SVaD
learning algorithms.

4. EXPERIMENTS

In this section, we present an experimental study of the al-
gorithms described in the previous sections. We applied the
proposed algorithms on various text data sets and compared
the performance of EEnt and EsGini with that of K-Means,
CSCAD and DGK algorithms. The reason for choosing the
K-Means algorithm (KMA) apart from CSCAD and DGK
is that it provides a baseline for assessing the advantages of
feature weighting. KMA is also a popular algorithm for text
clustering. We have included a brief description of CSCAD
and DGK algorithms in Appendix A.

Text data sets are sparse and high dimensional. We con-
sider standard labeled document collections and test the
proposed algorithms for their ability to discover dissimilar-
ity measures that distinguish one class from another without
actually considering the class labels of the documents. We
measure the success of the algorithms by the purity of the
regions that they discover.



4.1 Data Sets

We performed our experiments on three standard data
sets: 20 News Group, Yahoo K1, and Classic 3. These data
sets are described below.

20 News Group®: We considered different subsets of 20
News Group data that are known to contain clusters of vary-
ing degrees of separation [10]. As in [10], we considered three
random samples of three subsets of the 20 News Group data.
The subsets denoted by Binary has 250 documents each
from talk.politics.mideast and talk.politics.misc. Multi5 has
100 documents each from comp.graphics, rec.motorcycles,
rec.sport.baseball, sci.space, and talk.politics.mideast. Fi-

nally, Multi10has 50 documents each from alt.atheism, comp.

sys.mac.hardware, misc.forsale, rec.autos, rec.sport.hockey,
sci.crypt, sci.electronics, sci.med, sci.space, and talk.politics.
gun. It may be noted that Binary data sets have two highly
overlapping classes. Each of Multi5 data sets has samples
from 5 distinct classes, whereas Multi10 data sets have only
a few samples from 10 different classes. The size of the vo-
cabulary used to represent the documents in Binary data set
is about 4000, Multi5 about 3200 and Multi10 about 2800.
We observed that the relative performance of the algorithms
on various samples of Binary, Multi5 and Multi10 data sets
was similar. Hence, we report results on only one of them.

Yahoo K1%: This data set contains 2340 Reuters news
articles downloaded from Yahoo in 1997. There are 494
from Health, 1389 from Entertainment, 141 from Sports, 114
from Politics, 60 from Technology and 142 from Business.
After preprocessing, the documents from this data set are
represented using 12015 words. Note that this data set has
samples from 6 different classes. Here, the distribution of
data points across the class is uneven, ranging from 60 to
1389.

Classic 3%: Classic 3 data set contains 1400 aerospace
systems abstracts from the Cranfield collection, 1033 medi-
cal abstracts from the Medline collection and 1460 informa-
tion retrieval abstracts from the Cisi collection, making up
3893 documents in all. After preprocessing, this data set
has 4301 words. The points are almost equally distributed
among the three distinct classes.

The data sets were preprocessed using two major steps.
First, a set of words (vocabulary) is extracted and then each
document is represented with respect to this vocabulary.
Finding the vocabulary includes: (1) elimination of the stan-
dard list of stop words from the documents, (2) application
of Porter stemming® for term normalization, and (3) keeping
only the words which appear in at least 3 documents. We
represent each document by the unitized frequency vector.

4.2 Evaluation of Algorithms

We use the accuracy measure to compare the performance
of various algorithms. Let a;; represent the number of data
points from class ¢ that are in cluster j. Then the accuracy
of the partition is given by . max; ai;/n where n is the
total number of data points.

It is to be noted that points coming from a single class
need not form a single cluster. There could be multiple

3http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project /theo-
20/www /data/news20.tar.gz
*ftp://ftp.cs.umn.edu/dept/users/boley/PDDPdata/doc-K
Sftp://ftp.cs.cornell.edu/pub/smart
Shttp://www.tartarus.org/ martin/PorterStemmer/

Iteration 0 1 2 3 4 5
J(W,C) 334.7 | 329.5 | 328.3 | 328.1 | 327.8
Accuracy | 73.8 | 80.2 | 814 | 81.6 82 82

Table 2: Evolution of J(W,C) and Accuracies with
iterations when EEnt applied on a Multi5 data.

clusters in a class that represent sub-classes. We study the
performance of SVaD learning algorithms for various values
of K, i.e., the number of clusters.

4.3 Experimental Setup

In our implementations, we have observed that the pro-
posed algorithms, if applied on randomly initialized cen-
troids, show unstable behavior. One reason for this behav-
ior is that the number of parameters that are estimated in
feature-weighting clustering algorithms is twice as large as
that estimated by the traditional KMA. We, therefore, first
estimate the cluster centers giving equal weights to all the
dimensions using KMA and then fine-tune the cluster cen-
ters and the weights using the feature-weighting clustering
algorithms. In every iteration, the new sets of weights are
updated as follows. Let w, (t+1) represent the weights com-
puted using one of (9), (10), (14) or (15) in iteration (¢ + 1)
and w(t) the weights in iteration ¢. Then, the weights in
iteration (¢ + 1) are

w(t+1) = (1= AE)w(t) + ABwa(t+1),  (13)

where A(t) € [0,1] decreases with ¢. That is, A(t) = aA(t —
1), for a given constant a € [0,1]. In our experiments, we
observed that the variance of purity values for different ini-
tial values of A(0) and « above 0.5 is very small. Hence, we
report the results for A\(0) = 0.5 and o = 0.5. We set the
value of §; = 1.

It may be noted that when the documents are represented
as unit vectors, KMA with the cosine dissimilarity measure
and Euclidean distance measure would yield the same clus-
ters. This is essentially the same as Spherical K-Means al-
gorithms described in [3]. Therefore, we consider only the
weighted Euclidean measure and restrict our comparisons to
EEnt and EsGini in the experiments.

Since the clusters obtained by KMA are used to initialize
all other algorithms considered here, and since the results
of KMA are sensitive to initialization, the accuracy num-
bers reported in this section are averages over 10 random
initializations of KMA.

4.4 Results and Observations

4.4.1 Effectof SVaD Measures on Accuracies

In Table 2, we show a sample run of EEnt algorithm on
one of the Multi5 data sets. This table shows the evolution
of J(W,C) and the corresponding accuracies of the clusters
with the iterations. The accuracy, shown at iteration 0, is
that of the clusters obtained by KMA. The purity of clusters
increases with decrease in the value of the objective function
defined using SVaD measures. We have observed a similar
behavior of EEnt and EsGini on other data sets also. This
validates our hypothesis that SVaD measures capture the
underlying structure in the data sets more accurately.



4.4.2 Comparison with Other Algorithms

Figure 1 to Figure 5 show average accuracies of various
algorithms on the 5 data sets for various number of clus-
ters. The accuracies of KMA and DGK are very close to
each other and hence, in the figures, the lines corresponding
to these algorithms are indistinguishable. The lines corre-
sponding to CSCAD are also close to that of KMA in all the
cases except Class 3.

General observations: The accuracies of SVaD algo-
rithms follow the trend of the accuracies of other algorithms.
In all our experiments, both SVaD learning algorithms im-
prove the accuracies of clusters obtained by KMA. It is ob-
served in our experiments that the improvement could be
as large as 8% in some instances. EEnt and EsGini consis-
tently perform better than DGK on all data sets and for all
values of K. EEnt and EsGini perform better than CSCAD
on all data sets excepts in the case of Classic 3 and for a few
values of K.

Note that the weight update equation of CSCAD (15)
may result in negative values of wj;. Our experience with
CSCAD shows that it is quite sensitive to initialization and
it may have convergence problems. In contrast, it may be
observed that wj; in (9) and (10) are always positive. More-
over, in our experience, these two versions are much less
sensitive to the choice of §;.

Data specific observations: When K = 2, EEnt and
EsGini could not further improve the results of KMA on the
Binary data set. The reason is that the data set contains
two highly overlapping classes. However, for other values of
K, they marginally improve the accuracies.

In the case of Multi5, the accuracies of the algorithms are
non-monotonic with K. The improvement of accuracies is
large for intermediate values of K and small for extreme
values of K. When K = 5, KMA finds relatively stable
clusters. Hence, SVaD algorithms are unable to improve
the accuracies as much as they did for intermediate values
of K. For larger values of K, the clusters are closely spaced
and hence there is little scope for improvement by the SVaD
algorithms.

MultilO data sets are the toughest to cluster because of
the large number of classes present in the data. In this case,
the accuracies of the algorithms are monotonically increas-
ing with the number of clusters. The extent of improvement
of accuracies of SVaD algorithms over KMA is almost con-
stant over the entire range of K. This reflects the fact that
the documents in Multil0 data set are uniformly distributed
over feature space.

The distribution of documents in Yahoo K1 data set is
highly skewed. The extent of improvements that the SVaD
algorithms could achieve decrease with K. For higher values
of K, KMA is able to find almost pure sub-clusters, result-
ing in accuracies of about 90%. This leaves little scope for
improvement.

The performance of CSCAD differs noticeably in the case
of Classic 3. It performs better than the SVaD algorithms
for K = 3 and better than EEnt for K = 9. However, for
larger values of K, the SVaD algorithms perform better than
the rest. Asin the case of Multi5, the improvements of SVaD
algorithms over others are significant and consistent. One
may recall that Multi5 and Classic 3 consist of documents
from distinct classes. Therefore, this observation implies
that when there are distinct clusters in the data set, KMA
yields confusing clusters when the number of clusters is over-
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Figure 2: Accuracy results on Multi5 data.

specified. In this scenario, EEnt and EsGini can fine-tune
the clusters to improve their purity.

5. SUMMARY AND CONCLUSIONS

We have defined a general class of spatially variant dissim-
ilarity measures and proposed algorithms to learn the mea-
sure underlying a given data set in an unsupervised learning
framework. Through our experiments on various textual
data sets, we have shown that such a formulation of dis-
similarity measure can more accurately capture the hidden
structure in the data than a standard Euclidean measure
that does not vary over feature space. We have also shown
that the proposed learning algorithms perform better than
other similar algorithms in the literature, and have better
stability properties.

Even though we have applied these algorithms only to
text data sets, the algorithms derived here do not assume
any specific characteristics of textual data sets. Hence, they
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Figure 3: Accuracy results on Multil10 data.
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are applicable to general data sets. Since the algorithms
perform better for larger K, it would be interesting to in-
vestigate whether they can be used to find subtopics of a
topic. Finally, it will be interesting to learn SVaD measures
for labeled data sets.
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APPENDIX

A. OTHER FEATURE WEIGHTING CLUS-
TERING TECHNIQUES

A.1 Diagonal Gustafson-Kessel (DGK)

Gustafson and Kessel [7] associate each cluster with a dif-
ferent norm matrix. Let A = (Ai,..., Ax) be the set of k
norm matrices associated with k clusters. Let uj; is the fuzzy
membership of @; in cluster j and U = [uj;]. By restricting
Ajs to be diagonal and u;; € {0,1}, we can reformulate the
original optimization problem in terms of SVaD measures as
follows:

k M
gg/lJDGK(C,W):Z Z ijlgl(mivcj%

Jj=1T;€R; I=1

subject to [, wji = p;. Note that this problem can be solved
using the same AO algorithms described in Section 3. Here,
the update for C and P would remain the same as that
discussed in Section 3. It can be easily shown that when

Pj = 17vja

1/M
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Yx,en, 91(Ti; ;)

(14)

Wy =

minimize Jpgk for a given C.

A.2 Crisp Simultaneous Clustering and At-
tribute Discrimination (CSCAD)

Frigui et. al. in [5, 6], considered a fuzzy version of
the feature-weighting based clustering problem (SCAD). To
make a fair comparison of our algorithms with SCAD, we de-
rive its crisp version and refer to it as Crisp SCAD (CSCAD).
In [5, 6], the Gini measure is used for regularization. If the
Gini measure is considered with r = 1, the weights w;; that
minimize the corresponding objective function for a given C'
and P, are given by

11 |1 &
el VTS 72 2 gnl@ie) = D ailwic)

n=1T;cR; T;ER;
(15)

Since SCAD uses the weighted Euclidean measure, the up-
date equations of centroids in CSCAD remain the same as in
(11). The update equation for wj; in SCAD is quite similar
to (15). One may note that, in (15), the value of wj; can
become negative. In [5], a heuristic is used to estimate the
value J; in every iteration and set the negative values of wj;
to zero before normalizing the weights.



