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Abstract

We present techniques for deriving types from existing object-oriented types using the rela-
tional algebraic projection operation and for inferring the methods that are applicable to these
types. Such type derivation occurs, for example, as a result of defining algebraic views over ob-
ject types. We refactor the type hierarchy and place the derived types in the type hierarchy in
such a way that the state and behavior of existing types remain exactly as before. Our results
have applicability to relational databases extended with object-oriented type systems and to

object-oriented systems that support algebraic operations.

1 Introduction

In relational database systems, it is often useful to define views over sets of related data items for
purposes of abstraction or encapsulation. Views are specified by using the standard algebraic query
operations: e.g., projection, selection, join. A view is considered a virtual relation and is simply
added to the the list of existing relations. Views are defined over relations, and the “type” of a
view, like that of a relation, is implicitly given by the types of its attributes. The instantiation, or

materialization, of a view is determined by the contents of those relations over which the view is

defined.

Because of their usefulness in relational databases, views have also attracted considerable atten-
tion in object-oriented database systems [1] [9] [10] [11] [16] [17] [18]. However, unlike in relational
systems, types and type extents are often decoupled in object-oriented type systems [3]. Thus it
becomes important to separate the two aspects of view operations that are specific to the manipu-
lation of types and type instances: (1) the derivation of new types as a result of the view operation;
(2) the manipulation of instances of the source types of the view to obtain the instances of the type
derived by the view operation. We term these aspects the type derivation problem and the type
instantiation problem respectively. It is the first of these—the problem of dynamically deriving new

types—that we shall address in this paper.



In object-oriented type systems, there are two aspects to such type derivation that must be

considered:

e The behavior of the derived type must be inferred—that is, it must be determined which of
the methods that are applicable to the source types of the derived type are applicable to the
new type itself.

e The new type must be correctly positioned in the existing type hierarchy. The new type must
be inserted into the type hierarchy in such a way that existing types are not affected: they

must have both the same state and the same behavior as before the creation of the derived

type.

We consider type derivation using the relational algebraic operations, focussing here only on
the projection operation. Projection (II) takes a type in terms of a set of attributes and creates
a new type as defined by a subset of those attributes. Thus, if type T has attributes a, b, and
¢, the result of the projection operation II,;7 is a type with two attributes, @ and 6. Of the
relational operations, projection poses the greatest problems for type derivation because of the

implicit refactorization of the type hierarchy that it entails.

1.1 Previous Work

Several proposals on views in object-oriented systems have suggested the derivation of a virtual
type for a view [1] [9] [10] [11] [16] [17] [18]. As pointed out in [15], many of the current proposals
for object-oriented types derived as the result of a view operation do not discuss the integration of
the derived type into the existing type hierarchy. In some proposals the derived type is treated as
a separate entity (e.g., [9]), in some the derived type is made a direct subtype of the root of the
type hierarchy (e.g., [12]), and in some only the local relationship of the derived type with respect
to the source type is established (e.g., [10] [14] [17]).

Previous work in the area of inserting derived types into the type hierarchy include [13] [15] [16]
[19]. This problem has also been addressed in the knowledge representation literature (e.g., [4] [5]
[7]). However, none of this work has addressed the problem of determining the behavior of the new
type. It was proposed in [1] [6] that the type definer specify which existing methods are applicable
to the new type. Determining which methods apply to a new type is a complex problem, and
leaving it to the type definer is error-prone. Furthermore, it must be determined that the methods

selected are indeed type-correct and mutually consistent.



1.2 Organization of this Paper

In Section 2, we give our model of an object-oriented type system. This model is intended to
be sufficiently general that our results be applicable to a large number of specific systems. In
Section 3, we motivate our approach with a simple example. Given a projection over a type T', we
first determine which methods applicable to 17" will continue to be applicable to the new type, and
these methods determine the behavior of the new type. The algorithm for determining applicable
methods is presented in Section 4. This new type must now be integrated into the existing type
hierarchy and its relationship to the other types established. To accommodate the new type in
the existing type hierarchy, however, it may be necessary to refactor the existing hierarachy. This
factorization derives a new type hierarchy that preserves the semantics of the original hierarchy
and includes the new derived type. Section 5 discusses state factorization, and Section 6 discusses

method factorization. We conclude by outlining some open problems in Section 7.

2 Model

We assume a general object-oriented type system in which a data type consists both of state and of
a set of operations that can be applied to instances of the type. The state consists of a set of named
attributes in which each attribute is associated with a type. Types are organized in a hierarchy
and a sublype relation is defined over them. The meaning of this subtype relation corresponds to
that of subtype polymorphism, or inclusion polymorphism [8]: A is a subtype of B, A and B not
necessarily distinct, exactly when every instance of A is also an instance of B. The type hierarchy is
a directed acyclic graph—that is, we allow multiple inheritance. The semantics of this inheritance

is as follows:

o If A is a supertype of B, then every attribute of A is also an attribute of B.

o If D has supertypes B and C, and B and C have a common supertype A, then attributes of

A are inherited only once by instances of D.

We assume that there is a precedence relationship among the direct supertypes of a type. (For a
discussion of the role of this precedence relationship in method selection, see [2].) To simplify our

presentation, we also assume that attribute names are unique.

Operations on the instances of types are defined by generic functions, where a generic function
corresponds to a set of methods and the methods define the type-specific behavior of the generic
function. A method is defined for a set of arguments of particular types and can be executed for
any arguments that are instances of those types or their subtypes. The selection of the method to

be executed depends on the types of the actual arguments with which the generic function is called



at run time. A method can be an accessor method, which directly accesses the state associated
with a single attribute of the type, or a method can be a general method, which may invoke other
methods, including accessors. Accessor methods can be reader methods, which simply return the
value of a particular attribute, or mutator methods, which alter the value of a particular attribute.

The only access to the attributes of a type is through such methods.

We consider the general case in which methods are multi-methods. That is, when a generic
function is called, the method dispatched at run time is selected on the basis of the types of all
of the actual arguments to the call, as in, for example, CommonLoops, CL.OS, and the proposed
SQL3. In some object-oriented languages (e.g. C++, Smalltalk), there is a single, distinguished
argument whose type determines which method is dispatched when a generic function is called.
Since such single-argument method dispatch is a special case of multi-method dispatch, the results

of our work can be applied to such languages as well.

We assume further that it is transparent to the user of a type whether a particular attribute or

method of the type was defined locally at that type itself or inherited from one of its supertypes.

2.1 Notation

We represent the subtype relation by <. If A < BA A # B, we say that A is a proper subtype of
B and represent this relation by <. Since the proper subtype relation is a partial order, we can
view such a system of types as a directed acyclic graph. There is a path from A to B if and only
if A is a subtype of B. If A < B, we also say that B is a supertype of A. The supertype relation is
correspondingly denoted by >. We will use upper case letters to denote types and the corresponding
lower case letters to denote their instances. Thus, we will write a to denote an instance of type A.
In our figures, we will draw an arrow from subtype to supertype to denote the subtype relationship.
We denote the precedence relationships among the direct supertypes of a type by integers, with a
lower number signifying higher precedence. Arrows in the figures are annotated to specify these

precedence relationships.

We will denote a particular method my of an n-ary generic function m as my(T¢, 17, ..., T7),
where T,i is the type of the i** formal argument of method my. The call to the generic function

will be denoted without a subscript on m.

3 Projection over Types

The algebraic projection operation over a type T selects a subset of the attributes of T, specified
in terms of a projection list, and derives a new type T. Intuitively, it seems natural that any

methods associated with type T that are “appropriate” for T should be applicable to instances of



the new derived type T, and, correspondingly, that 7" should be related to the source type T as its
supertype, since T contains a subset of the attributes of 7. The following example illustrates what

we mean. In Section 4, we formally define which methods are applicable to a derived type.

3.1 A Simple Example

SSN
Per son name
date—of-birth

pay-rate

Enpl oyee hrs—worked

age(Person) ={...get_date—of-birth(Person)...}

income(Employee) = {...get_pay-rate(Employee),get_hrs—-worked(Employee)...}
promote(Employee) = {...get_date—of-birth(Employee),get_pay-rate(Employee)...}

Figure 1: A simple type hierarchy

Consider the simple type hierarchy shown in Figure 1. The state of the type Person consists of
attributes SSN, name, and date-of-birth. The type Fmployee inherits these attributes, and addition-
ally defines the attributes pay-rate and hrs-worked. We assume that there exist accessor methods
corresponding to each of these attributes: e.g. gel_SSN, gel_name, etc. The figure additionally
shows the three methods age, income, and promote. The attributes used by each of these meth-
ods are indicated implicitly in the respective method bodies by calls to the corresponding accessor
methods. The age method uses the attribute date-of-birth to compute the age of a person. Since
Employee is a subtype of Person, this method can also be used to compute the age of an employee.
The income method uses the pay-rate and hrs-worked attributes to compute an employee’s income.
The promote method uses the date-of-birth and pay-rate attributes to determine if an employee is

eligible for promotion.

We now apply the projection operation to Employee, selecting only the SSN, date-of-birth, and
pay-rate fields, thus deriving a new type, say, Em;l;yee. We would like automatically to infer the
methods that are applicable to Em;lgyee, and to place Em;l;yee in the type hierarchy such that

it inherits the correct state and behavior. In so doing, it is essential that the new type be inserted
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age(Person) ={...get_date—of-birth(Person)...}

income(Employee) = {...get_pay-rate(Employee),get_hrs—worked(Employee)...}
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promote(Employee) = {...get_date—of-birth(Employee),get_pay-rate(Employee)...}

Figure 2: Refactored type hierarchy

into the type hierarchy in such a way that existing types are not affected.

The income method clearly does not apply to the new type Em;l;yee, since it depends on the
hrs-worked attribute, which is not present in Em;lgyee. The age and promote methods, however,

should be applicable to instances of Emgl?)yee.

The refactored type hierarchy is shown in Figure 2. In the refactored type hierarchy, Employee
must be a subtype not only of Person, but also of Em;lzyee. Note, however, that Em;lzyee cannot
inherit from Person because of the absence of the name attribute in Em?l;yee. The type Person
is therefore refactored into two types: PeArgan, consisting of attributes SSN and date-of-birth, and
Person, from which these attributes have been removed. Both Person and Em;lzyee are thus
made subtypes of the new type Person. Tt can be checked that the new type has the correct state
and behavior, and that the types Person and Employee have both the same cumulative state and

behavior as before the creation of the new type.

We present next the algorithms for determining the methods that are applicable to the derived
type and for refactoring the type hierarchy.



4 Method Applicability

We say that a method my (T}, TZ,...,T}) is applicable to a type T if there is some T,i, 1<e<n
such that T < T,i.

Any method my that is applicable to a type 1" is applicable to a derived type T, T = |1 P
unless my, accesses an attribute of 7' not included in the projection list of 7" or my, invokes a generic

function n on the argument 7" and there is no method of n that is applicable to T.

We say that a method my(T},...,TF) is applicable to a generic function call m(T*,...,T™) if
Vi, 1<i<mn, T'<Tj.

In general, because of subtype polymorphism, there can be more than one method that is
applicable to a given generic function call. Given two methods m; and m; that are both applicable to
a call, we assume that an ordering mechanism is provided that uniquely determines the precedence
between those methods.! If m; precedes m; in accordance with this precedence ordering, we say
that m; is more specific than m;. We term the method of highest precedence in this ordering the

most specific applicable method.

4.1 Algorithm for Computing Method Applicability

Given the notion of method applicability, we can now describe how methods can be inferred for

derived projection types.

The applicability of a method to a type can be determined by considering the call graph of
the method. In the absence of recursion, the call graph must bottom out on accessor methods. If
those accessor methods only access state that is present in the derived type, then the method being
tested is applicable to that type. The actual algorithm presented below, however, is considerably
more complex, because it takes into account cycles in the method call graph, the applicability of
methods less specific than the most specific applicable method, and multiple arguments of the same

source type.

The function IsApplicable comprises the heart of this algorithm. It is invoked on each method
that is applicable to the source type T. IsApplicable tests a given method my(T}, TZ,...,T)
by analyzing its call graph, examining all generic function calls in the method body that are
applicable to those method arguments that are supertypes of the source type 7. In order for
my(T},TZ, ..., T}) to be applicable, there must in turn be at least one applicable method for each
such generic function call n(T?,.. LTI ., ™) in the body of my. We assume that the set of
generic function calls in the body of my, that need to be checked in this way is determined by data

flow analysis.

'For a discussion of a number of such method precedence mechanisms and their relative power, see [2].



Consider a generic function call n(T",...7T7,...,T™) in the body of m;. We distinguish two

cases:

1. If only one of the arguments of the generic function call n(T*,...T7,..., T™)—say T’—is of
type T or a supertype of T and corresponds to an argument of my, then the set of methods

of n from which an applicable method must be found consists of those methods that are

applicable to the call n(T1,...T,...,T™).

To see why, assume that A < B and that we are determining applicability of methods for
the projection type A derived from A. Assume that we have a method my(B) whose body
consists solely of the generic function call n(B). We need to determine only if there is some
method of n that is applicable to the call n(A) that is also applicable to A. If such a method
exists, then my(B) should also be applicable to A, regardless of whether there is any method
of n that is applicable to the call n(B) that is also applicable to A.

2. If multiple arguments of the generic function call n(T*,...T7,...,T™) are of type T or
supertypes of T" and correspond to arguments of my, then we consider a method of n to be
applicable to the call only if it is applicable to all combinations of non-null substitutions of
T for those supertypes. To obtain this, we require that the set of methods of n from which
an applicable method is to be found consist of those methods that are applicable to the call
n(TY,...T7,...,T™).

To see why, assume that A < B, A < ' and that we are determining applicability of methods
for the projection type A derived from A. Consider a method my(B,C) whose body consists
solely of the generic function call n(B,C'). The existence of a method of n that is applicable
to the call n(A, A) does not imply that there are applicable methods for the calls n(B, A)
and n(4,C).

We maintain three global data structures:

o MethodStack is a stack of methods, corresponding to the call stack of IsApplicable. Fach entry
in MethodStack is a pair <method, dependencyList>, where dependencylList keeps track of
those methods whose applicability is contingent on the applicability of method.

o Applicable is a list of those methods that have been determined to apply to the derived
type 1" thus far. Applicable is computed optimistically in the following sense: Suppose a
method m; calls a generic function n which requires determination of the applicability of n;.
If the applicability of n; is already in the process of being determined (i.e., n; is a method
inside MethodStack), then we assume that n; is applicable, and conditionally determine the
applicability of m;. If n; is later determined to be not applicable, then m; is removed from

the Applicable list.



o NotApplicableis a list of those methods that have been determined to not apply to the derived
type T thus far.

Initially, MethodStack, Applicable, and NotApplicable are all empty. IsApplicable(m, T, projectionlist)
is then called on all methods my that are applicable to T'. After the end of each top-level call to
the function IsApplicable, MethodStack is empty.

function IsApplicable(m:method, T: type, p: projectionlist) returns {applicable, notapplicable }
/* first check if this method has already been processed */
if m € Applicable then
return applicable
else if m € NotApplicable then
return notapplicable
if m is an accessor method then
/* m must be a method on T or a supertype of 7" or we wouldn’t be here */
if m accesses a field in p then
Applicable — Applicable U m
return applicable
else
NotApplicable — NotApplicable U m
return notapplicable
/* m is a general method */
if m is anywhere in MethodStack then
dependencyList(m) — dependencyList(m) U all methods above m in MethodStack
return applicable
else
push m onto top of MethodStack [* set up for recursive calls to IsApplicable */
for all generic functions calls n(zy,...z,,) in the body of m that are relevant to the arguments of m do
for all methods ny of generic function n that are applicable do
if IsApplicable(ng, T, p) then
/* if any method checks out, the call to n succeeds */
continue to next generic function call in the body of m
od
/* falling out of inner loop means there is no applicable method for some function call n */
for all methods d in dependencyList(m) do
Applicable — Applicable — d
od
NotApplicable — NotApplicable U m



pop MethodStack /[* remove m from top of stack */
return notapplicable
od
/* falling out of outer loop means there are applicable methods for all function calls in m */
Applicable — Applicable U m
pop MethodStack [* clean up the stack */

return applicable

4.2 Example 1

Consider the type hierarchy as shown in Figure 3 below. We have annotated the type nodes with

the names of attributes defined at those nodes.

N
N
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Figure 3: Original type hierarchy.

Consider also the following set of generic functions and methods:

un(A) = {getai(A))
us(C) = {get g1(C)}
us(B) = {get_ha(B))

v1(4,C) = {u(A); w(C)}
vo(B,C) = {get_b1(B); u(C)}
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wi(A) = {getai(A))
wx(C) = {u(C))

wl(AvB) = {y(A,B); U(BvA)}

yl(A7B) = {‘r(AvB)}

The subscripts after the generic function name are used to denote specific methods of that generic
function. The function calls in a method body are shown enclosed in {}’s. We ignore for now
the return values of the methods. The methods get_a1(A), gel_b1(B), get_hy(B), and get_g1(C)
are accessor methods and access the attributes aq, by, hy and g; respectively; their bodies are not

shown.

We consider the projection A = Il4,e,h, A and compute the methods that are applicable to the
derived type A.

First, we note that all the methods given are applicable to the source type A. We begin by
testing the applicability of v, for A. Since this is the first method to be tested, MethodStack,
Applicable, and NotApplicable are all empty. Interaction with MethodStack becomes interersting
only for recursive function calls. To simplify exposition, we do not describe this interaction for the

checking of v;.

The initial call to IsApplicable is IsApplicable(vy, A, azezhz). The body of v; contains the
function calls u(A) and w(C'), and we check them in that order. All three methods of u are
applicable to an argument of type A. The order in which these methods are tested for applicability
does not matter, since as long as one of them is applicable, the call u(A) will succeed. Let us assume
that we test them in the order in which they occur above. To test method uq we recursively call
IsApplicable(uy, A, azeshy). IsApplicable is then called again on the accessor method get_a;, which
is invoked in the body of w; and which accesses the field a1, not present in the projection list. The
method get_aq is thus added to the NotApplicable list and the last recursive call returns, and then
uq is added to the NotApplicable list and the previous recursive call returns. The method wus is
tested next by calling IsApplicable(uy, A, azezhy). The method ug calls the accessor get_g;, which
accesses the field g1, also not present in the projection list. Methods get_g; and uy are therefore
likewise added to the NotApplicable list. We next call IsApplicable(us, A, azezhy). The accessor
method ug accesses the field hg, which is present in the projection list, and the test succeeds. We

therefore add get_hy; and usz to the Applicable list. The function call u(A) in v; thus checks out.

We now have to check the function call w(C'). Since w is a function of only one argument, w(C')
will check out if there is an applicable method for the call w(A). To check wy, we call IsApplicable
on the accessor method get_a;. The method get_ay is already in the NotApplicable list. Therefore,
IsApplicable returns notapplicable and wy in turn is added to the NotApplicable list. Next, we call

11



IsApplicable(wq, A, azezhs). The method wy contains the call u(C'). This call will check out if there
is any applicable method for the call u(A). Methods uy and ug are in the NotApplicable list, but
ug is in the Applicable list. Since u(C') is the only call in the body of wj, wy is therefore added to
the Applicable list.

Dropping back a level, we see that there are no more function calls in the body of vy, so we
add vy to the Applicable list. Note that as a side effect of checking the applicability of v; we
have determined the applicability of uy, us, us, w1, w2, and the three accessor methods get_a;(A),

gel_hy(B), and get_g1(C).

Let us now check the method 1. Note that the method z4 is indirectly recursive. We shall show
the interaction with the MethodStack in this case. Recall that get_a1(A), get_ha(B), get_g1(C), us,
wy, and vy are in the Applicable list, methods uy, ug, and wy are in the NotApplicable list, and
the MethodStack is empty. The initial call is IsApplicable(z1, A, azezhz). We push z; onto the
MethodStack. The first call in the body of z1 is y(A, B). Method y; is applicable to this call and

is checked next.

There is one function call in the body of y;, (A, B). We push y; onto the MethodStack, and
call IsApplicable(z1, A, azezhy). In the body of IsApplicable, it is found that z; is already on the
MethodStack. The only method above x; on the MethodStack/ is y,. We add y; to the dependen-
cyList(xq) (previously empty) and return applicable. Since we are in the process of determining the
applicability of z1, we are optimistically assuming that z; will succeed and keeping track that i
might have been declared applicable based on this assumption. If z; is later found to be applicable,
nothing needs to be done. If, however, 1 turns out to be not applicable, we will remove dependent
methods from the Applicable list. Since there is no other call in the body of y;, we add y; to the
Applicable list, and pop y; from the MethodStack.

The next call in the body of 1 is v(B, A). The method v; does not apply to the call (B, A), but
vg does. We push v; onto the stack and check for the applicability of get_b;(B). The accessor method
get_bi(B) accesses the attribute by, which is not present in the projection list, so we add get_b1(B)
to the NotApplicable list and return notapplicable. Method v, is added to the NotApplicable list,
and we pop vy from the MethodStack and return notapplicable. Since there is no other applicable
v method, this means that z; is not applicable. Since method y; is in the dependencyList(z1), we
must remove it from the Applicable list. We then add z; to the NotApplicable list and pop it from
the MethodStack.

Note that we did not put y; in the NotApplicable list when we removed it from the Applicable
list. Its status at this stage is still unknown, and this method will have to be checked again. It
turns out that method y; will in fact be determined to be not applicable because x4 is the only
applicable method for the call z(A, B). However, had there been another applicable method, say

xq, the outcome might have been different.
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5 Factoring State

The creation of a derived type T as a result of a projection operation induces a refactorization of the
original type hierarchy in order to accommodate the inclusion of T. This factorization derives a new
type hierarchy that preserves the semantics of the original hierarchy and includes the new derived
type. Applicable methods are relocated in this refactored hierarchy such that all original types
continue to have the same behavior as before, and the new type inherits all applicable methods and

no others.

The original type hierarchy is factored into a derived type hierarchy by introducing what we
shall call surrogate types. A surrogate type is a type that assumes a part of the state or behavior
of the source type from which it is spun off. The types that are derived by the projection operator
are thus themselves such surrogate types. The surrogate type plus the modified source type, when
combined by means of inheritance, have exactly the state and behavior of the original source type.
The state of the surrogate is determined by that portion of the projection list that applies to its
source type: it consists precisely of those attributes that are contained both in the projection list
and in the local attributes of the source type. The behavior of the surrogate type is determined

according to which methods are applicable in the sense defined in Section 4.

The factorization into surrogate types is necessary to capture that portion of the state or
behavior of the source type that is applicable to the derived type while not including attributes
and behavior from the source type and its supertypes that are not. The factorization is recursive
in the sense that each type ¢ through which the new derived type inherits attributes or methods is
factored into two types: a surrogate type Q, which contains only those attributes that are inherited
by the derived type T; and the modified source type @, from which those attributes are removed.
Q is then further modified to be a direct subtype of its surrogate Q. Type @ is given the highest
precedence of any of the supertypes of ) in order that this factorization be transparent from the

standpoint of the state and behavior of the combined Q—Q types.

We present below the algorithm for state factorization. Method factorization is presented in

Section 6.

5.1 Algorithm for Factoring State

procedure FactorState( A:attributeList, T:type, R:lype, P:precedence)
if the surrogate type T for T and A does not already exist then
create a new type T
make T a supertype of T such that 7 has highest precedence among the supertypes of T’
if R # NULL then
make R a subtype of T with precedence P

13



if type T was created in this call then
Y @ € A such that a is a local attribute of 7" do
move a to T
od

let S be the list of the direct supertypes of T, excluding T
V s € § in order of inheritance precedence do
let p be the precedence of s among the supertypes of T
let L be the list of attributes in A that are available at s
if L # () then
call FactorState(L, s, T, p)
od

The initial call is FactorState(projection-list, ', NULL, 0).

5.2 Example 2

Consider the type hierarchy shown in Figure 3. After the projection operation Il,,., 5, A, the type
hierarchy will be as shown in Figure 4. We note that the projection list is asezho and the initial

call to FactorState is FactorState(azeqhq, A, NULL,0).

NS
2N o
/\/“\
NN et W
SN |
AN

Figure 4: Factored type hierarchy after the projection 1I,,.,5, A.

>
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In the body of FactorState, a surrogate supertype A is created for A. This supertype is given
the highest precedence of A’s supertypes, indicated as 0. The attribute a3 is then moved from A
to A. Types B and C are both supertypes of A, but C has higher precedence, so FactorState is
first called recursively as FactorState(eghs, C, A, 1), and then as FactorState(ezhs, B, A, 2).

In the body of the first of these calls, FactorState(ezhy, C, A, 1), a surrogate supertype C is
created for C, and then A is made a subtype of C. The precedence of C for C is set to 0, and
the precedence of C' for A is set to 1. No local attribute of C' is present in the projection list,
so no attribute is moved from C to C. Type C also has two supertypes, E and F, of which F
has the higher precedence. Only the attribute hg is available at F; both the attributes ey and hq
are available at . FactorState is therefore called twice: first as FactorState(hz,F,é, 1), then as
FactorState(eqhy, E, C,2).

Let us trace the first call. A surrogate supertype F is created for F and C is made a subtype
of F'. The precedence of F for F is set to 0, and the precedence of F for C is set to 1. No attribute
is moved from F to F. The attribute hy is available at H, the only supertype of F, so the next call
to FactorState is FactorState(hy, H, F, 1). This call creates a surrogate supertype H for H, makes
F a subtype of H, sets the precedence of H for H to 0 and of H for I to 1, and moves hy from H

to H. There is no further recursive call to FactorState.

We now trace the second call. This time, a surrogate supertype E is created for E, C is
made a subtype of E, the precedence of E for E is set to 0 and the precedence of E for C is
set to 2, and e, is moved from E to E. Note that the relative precedence between E and F
as specified by type C is preserved by C in the relative precedence between E and F. Type
FE has two supertypes. Nomne of the attributes in the projection list are available at the higher
precedence supertype G, so FactorState is not called for G. The call for the supertype H is
FactorState(hy, H, E, 2). The surrogate supertype H already exists. We therefore simply make H

a supertype of E with precedence 2 and return.

We drop back to the second call to FactorState from A for B, which is FactorState(ezhz, B, A,
2). The surrogate supertype B is created for B with precedence 0. B is also made a supertype of
A with precedence 2. No state is moved to B. B has two supertypes, but none of the attributes in
the projection list are present in D. The only recursive call therefore is FactorState(eghs, F, B, 2).
The surrogate type £ already exists, so we simply make £ a supertype of B with precedence 2 and

return. The type refactorization is now complete.
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6 Factoring Methods

Because the surrogate type is the direct supertype of its source type and furthermore because it
is the supertype of highest precedence, any method m;(T},.. .T;, ..., T7™) that is applicable to a
type Tij, T; - Tij, can be treated as if it were a method on m;(T},.. .Tij, Y S

The following algorithm associates the applicable methods for a type T with those types from
which 7 inherits according to the refactored type hierarchy. This algorithm considers only method

signatures. We discuss treatment of the method bodies in Section 6.3.

6.1 Algorithm for Factoring Methods

procedure FactorMethods( T:type)
V methods my € Applz'cable(T) as determined by IsApplicable do
let the signature of my be mg(T}, T7, ..., T})
create a new signature for my, in which 7§ is replaced by Tf (i = 1...n)

for all T,i for which a surrogate type T,ﬁ was created by FactorState
od

6.2 Example 3

Consider the methods given in Example 1. The IsApplicable procedure determined that the methods
v, U3, Wy, and get_hy are applicable. The other methods shown in the example were determined
to be not applicable. The method factoring algorithm will therefore create the following new

signatures:

v (A4, C)
us(B)
ws(C)
get_hy(B)

6.3 Processing of Method Bodies

Because of assignment and variable binding, however, modification of the method signature alone
may not be sufficient. In particular, if done naively, such modifications may cause type errors in

the method body.
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Consider, for example, the following original method:
21(c:C)={g:G; g —c¢; ... u(c); ... return(g); }

If we change the method signature of z; to z(c: C’), we introduce a type error in the assignment

g — cif C is not a subtype of G.

It is therefore necessary to analyze in the method body the reachability set for the use of all
parameters that are to be converted to their corresponding surrogate types. The type declarations
for any variables in this set need to be changed to declarations in terms of the corresponding
surrogate types. In some cases, as in the above example, these surrogate types may not yet exist.
The following algorithm shows how they are added to the extended type hierarchy. Note that no
attributes need to be moved to these surrogates. The result type of the method is processed in the

Same way.

6.4 Augmenting the Type Hierarchy

let X = set of types for which a surrogate was created by FaclorState
let I’ = set of methods determined applicable by IsApplicable
let Y = set of types that are are assigned transitively a value of one of the types in X by one of

the methods in #' (this set is determined by the standard definition-use flow analysis)
let Z=Y - X

procedure Augment(T: type, Z: set of types)
if T has a supertype that is a subtype of one of the types in Z then
for all direct supertypes of T except T in order of precedence do
let S be the direct supertype with precedence p
if 5 does not exist then
create S
make S a subtype of § with highest precedence
if T is not already a subtype of § then
make T a subtype of S with precedence p
Augment(S, Z)
od

The initial call is Augment(A,Z).
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6.5 Example 4

Suppose that after the analysis it is found that Z = {D, G}. The augmented type factorization

graph will be as shown in Figure 5 below.
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Figure 5: Augmented type hierarchy after processing of the method body for z;.

7 Conclusions and Future Work

We have presented mechanisms for deriving new types from existing types using the relational
algebraic projection operation and inferring those methods that continue to be applicable to the
new view type. We have shown how the type hierarchy can be refactored and the new type placed
in the type hierarchy in such a way that the cumulative state and behavior of existing types remain
as before. Our results have applicability to relational databases extended with object-oriented type

systems and to any object-oriented system that supports algebraic operations.

We believe that the work presented in this paper opens up several interesting areas for future
work. From a practical point of view, it needs to be investigated how—if at all—the number of
surrogate types with empty states can be reduced in the refactored type hierarchy, particularly when
views are defined over views. The mechanisms presented in this paper turn out to be fairly complex
because we have considered the general case involving multiple inheritance and multi-methods. It
will be interesting to specialize the solutions presented in this paper for specific cases of object-
oriented type systems that do not require this generality. Finally, the methodology presented in

this paper needs to be applied to the remaining algebraic operations.
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