
Partial-Sum Queries in OLAP Data Cubes Using Covering Codes

Ching-Tien Ho, Member, IEEE, Jehoshua Bruck, Senior Member, IEEE,

Rakesh Agrawal, Senior Member, IEEE

Abstract|A partial-sum query obtains the summation over a set of speci�ed cells of a data

cube. We establish a connection between the covering problem in the theory of error-correcting

codes and the partial-sum problem and use this connection to devise algorithms for the partial-

sum problem with e�cient space-time trade-o�s. For example, using our algorithms, with 44%

additional storage, the query response time can be improved by about 12%; by roughly doubling

the storage requirement, the query response time can be improved by about 34%.

Index Terms|Partial-sum query, covering code, error-correcting code, on-line analytical process-

ing, data cube, multidimensional database, precomputation, query algorithm.

1 Introduction

On-Line Analytical Processing (OLAP) [Cod93] allows companies to analyze aggregate databases

built from their data warehouses. An increasingly popular data model for OLAP applications is

the multidimensional database (MDDB) [OLA96], also known as data cube [GBLP96]. To build an

MDDB from a data warehouse, certain number of attributes are selected. Thus, each data record

contains a value for each of these attributes. Some of these attributes are chosen as metrics of

interest and are referred to as the measure attributes. The remaining attributes, say d of them, are

referred to as dimensions or the functional attributes. The measure attributes of all records with

the same combination of functional attributes are combined (e.g. summed up) into an aggregate

0C.-T. Ho and R. Agrawal are with IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120.

E-mail:fho, ragrawalg@almaden.ibm.com.
0J. Bruck is with California Institute of Technology Mail Stop 136-93, Pasadena, CA 91125. Email:

bruck@paradise.caltech.edu. Research was supported in part by the NSF Young Investigator Award CCR-9457811

and by the Sloan Research Fellowship.

1

value. Thus, an MDDB can be viewed as a d-dimensional array, indexed by the values of the d

functional attributes, whose cells contain the values of the measure attributes for the corresponding

combination of functional attributes.

Consider a data cube from an insurance company as an example. Assume the data cube has

four functional attributes (dimensions): age, time, state, and (insurance) type. Further assume

that the domain of age is 1 to 100, of time is 1Qtr87 to 4Qtr96 (4 quarters per year and over 10

years), of state is the 50 states in U.S., and of type is fhealth, home, auto, lifeg. The data cube will

have 100� 40� 50� 4 cells, with each cell containing the total revenue (the measure attribute) for

the corresponding combination of age, time, state, and type, e.g., (35, 1Qtr96, California, auto).

We consider a class of queries, which we shall call partial-sum queries, that sum over all selected

cells of a data cube, where selection is speci�ed by providing a subset of values for some of the

functional attributes. Partial-sum queries are frequent with respect to categorical attributes whose

values do not have a natural ordering, although they can arise with respect to numeric attributes as

well. Using the same example of an insurance data cube, a partial-sum query may obtain the total

revenue from the states of California, Florida, Texas, and Arizona, for life and health insurances,

and for 1Qtr94, 1Qtr95, and 1Qtr96. In an interactive exploration of data cube, which is the

predominant OLAP application area, it is imperative to have a system with fast response time.

Partial-Sum Problem The one-dimensional partial-sum problem can be formally stated as

follows. (The d-dimensional partial-sum problem will be de�ned in Section 7.) Let A be an array

of size m, indexed from 0 thoughm�1, whose value is known in advance. LetM = f0; 1; � � � ; m�1g

be the set of index domain of A. Given a subset of A's index domain I �M at query time, we are

interested in getting partial sum of A, speci�ed by I as:

Psum(A; I) =
X
i2I

A[i]:

Example 1 For example, consider the following array A with 6 elements:

A = (259; 401; 680; 937; 452; 63)

Let I = f0; 1; 5g then Psum(A; I) = 259 + 401 + 63 = 723: Let I = f0; 3; 4g then Psum(A; I) =

259 + 937 + 452 = 1648:

We will use two metrics to measure the cost of solving the partial-sum problem: time overhead T

and space overhead S. The partial-sum computation requires an access to an element of A followed

2

by an addition of its value to an existing value (the cumulative partial sum). Thus, a time step can

be modeled as the average time for accessing one array element and one arithmetic operation. We

de�ne T of an algorithm as the maximum number of time steps required by the algorithm (over all

possible input I 's). We de�ne S as the number of storage cells required for the execution of the

partial-sum operation. The storage may be used for the original array A and for precomputed data

that will help in achieving better response time. Clearly, a lower bound on S is m since at least

the entire array A, or some encoded form of it, has to be stored. Without any precomputation,

i.e., S = m, the worst-case time complexity is T = m (which occurs when I = M). On the other

hand, if one precomputes and stores all possible combinations of partial sums (S = 2m� 1), which

is clearly infeasible for large m, only one data access is needed (T = 1).

A straightforward observation is that if we precompute only the total sum of A, say A[�] =Pm�1
i=0 A[i], then the worst-case time complexity for any partial sum can be reduced from m to

dm=2e. This is because a partial sum can also be derived fromA[�]�Psum(A; I 0) where I 0 =M�I .

For example, considering Example 1, we can store the sum of the elements A[�] = 2792. Assume

I = f0; 1; 2; 4; 5g, then Psum(A; I) = A[�] � A[3] = 2792 � 937 = 1855. We will consider the

normalized measures for time and space. Namely, s = S=m and t = T=m: Clearly, using the A[�]

we can get (s; t) � (1; 0:5):

Contributions The goal of the paper is to derive a suite of (s; t) pairs, better than (s; t) � (1; 0:5).

In particular, we will focus on �nding (s; t) for t < 0:5 and s being a small constant (say, less than

5 or so). The best (s; t)-pairs obtained in this paper are summarized in Figure 1. (More detailed

(s; t) values are listed in Table 9 later.) For example, the entry (s; t) = (1:44; 0:44) implies that

with 44% additional storage, one can improve the query response time by about 12% (i.e., from

t = 0:5 to t = 0:44). Another entry (s; t) = (2:17; 0:33) means that if we roughly double the storage

requirement, the query response time can be improved by about 34%.

The main contributions of the paper are as follows. First, we establish the connection between

covering codes [GS85] [CHLL77] and the partial-sum problem. Second, we apply four known cov-

ering codes from [GS85], [CLS86], and [CLLM97] to the partial-sum problem to obtain algorithms

with various space-time trade-o�s. Third, we modify the requirements on covering codes to better

re
ect the partial-sum problem and devise new covering codes with respect to the new requirements.

As a result, we further improve many of the (s; t) points and give better space-time trade-o�s.

Although we discuss explicitly only the SUM aggregation operation, the techniques presented

3

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8

T
: T

im
e

re
qu

ire
m

en
t

S: Storage requirement

Storage and Time trade-off for computing partial sum

best (s,t) data points

Figure 1: The best (s; t) data points for computing partial sum.

apply to the other common OLAP aggregation operations of COUNT and AVERAGE | COUNT

is a special case of SUM and AVERAGE can be obtained by keeping the 2-tuple (sum, count).

In general, these techniques can be applied to any binary operation op for which there exists an

inverse binary operation iop such that a op b iop b = a, for any a and b in the domain.

Related work Following the introduction of the data cube model in [GBLP96], there has been

considerable research in developing algorithms for computing the data cube [AAD+96], for deciding

what subset of a data cube to pre-compute [HRU96] [GHRU97] [CCH+98], for estimating the size

of multidimensional aggregates [SDNR96], and for indexing pre-computed summaries [SR96] [JS96].

Related work also includes work done in the context of statistical databases [CM89] on indexing

pre-computed aggregates [STL89] and incrementally maintaining them [Mic92]. Also relevant is

the work on maintenance of materialized views [Lom95] and processing of aggregation queries

[CS94] [GHQ95] [YL95]. However, these works do not directly addresses e�cient precomputation

techniques for partial-sum queries.

Closest to the work presented in this paper is the accompanying paper [HAMS97], in which we

consider range-sum queries over data cubes and give fast algorithms for them. A range-sum query

obtains the sum over all selected cells of a data cube where the selection is speci�ed by providing

contiguous ranges of values for numeric dimensions. An example of a range-sum query over an

insurance data cube is to �nd the revenue from customers with an age between 37 and 52, in a

time from 1Qtr88 to 4Qtr96, in all of U.S., and with auto insurance. Although a range-sum query

4

can be viewed as a special case of the partial-sum query (thus the general techniques proposed here

can also be applied to the range-sum query), the techniques specialized for range-sum queries take

advantage of the contiguous ranges of selection and should be preferred for better performance.

Organization of the paper The rest of the paper is organized as follows. In Section 2, we

give a brief background on the covering codes that is pertinent to the partial-sum problem. In

Section 3, we give main theorems that relate the properties of covering codes to the space and

time complexities in solving the partial-sum problem. In Section 4, we apply the known covering

codes to the partial-sum problem. In Section 5, we modify the de�nition of the covering code by

assuming all the weight-1 vectors are included as codewords, in order to derive faster algorithms.

In Section 6, we further modify the de�nition of the covering code based on a composition function.

This results in further improvement in space and time overheads in solving the partial sum problem.

Section 7 discusses partial-sum queries over multi-dimensional cubes. We conclude with a summary

in Section 8.

2 Covering Codes

In this section, we brie
y review some concepts from the theory of error-correcting codes [GS85]

[CHLL77] that are pertinent to the partial-sum problem.

A code is a set of codewords where each codeword de�nes a valid string of digits. For the purposes

of this paper, we are only interested in binary codes of �xed length. We will represent a binary

vector in a bit string format and use the terms vector and bit string interchangeably depending on

the context. The bit position of a length-m bit string (or vector) is labeled from 0 through m � 1

from left (the most signi�cant bit) to right (the least signi�cant bit). Also, R�(V) denotes any

bit-rotation of vector V and \j" denotes concatenation of two bit strings (vectors).

The Hamming weight of a length-m binary vector V = (b0b1 � � �bm�1) is
Pm�1

i=0 bi, i.e., the

number of 1-bits in this vector. The Hamming distance of two binary vectors V and V 0, denoted

Hamming(V; V 0), is the Hamming weight of V
V 0 where \
" is the bit-wise exclusive-or operator.

For instance, the Hamming weight of the vector V = (0010110) is 3. The Hamming distance between

V = (0010110) and V 0 = (0010001) is 3, which is the Hamming weight of V
 V 0 = (0000111):

Throughout the paper, the weight of a codeword or a vector always means the Hamming weight.

The covering radius R of a binary code is the maximal Hamming distance of any vector of the

5

same length from a codeword (a vector in the code). A binary code C is an (m;K;R)-covering

code if (1) each codeword is of length m; (2) there are K (legal) codewords in C (out of all 2m

possible combinations in the vector space); and (3) the covering radius of the code is R.

Example 2 The code C = f(00000); (11111)g is a (5; 2; 2)-covering code because m = 5, K = 2

and R = 2. For this code, R = 2 because every binary vector of length 5 is within distance 2 from

either (00000) or (11111). As another example, the code C = f(00000); (00111); (10000); (01000),

(11011); (11101); (11110)g can be veri�ed from Table 1 as a (5; 7; 1)-covering code because all 32

vectors are within distance 1 from one of the 7 codewords.

3 Relating the Covering Radius of Codes to Partial Sums

3.1 A Motivating Example

We �rst give a motivating example based on the (5; 7; 1)-covering code. Suppose the array A

is of size m = 5 and the initial values of A[0] through A[4] are known. We �rst precompute

the partial sums corresponding to all 7 codewords of the (5; 7; 1)-covering code. For instance,

corresponding to the codeword (00111), the precomputed partial sum is A[2] + A[3] + A[4]. Note

that the corresponding partial sum for (00000) is zero and need not be computed. Also, the

corresponding partial sums for (10000) and (01000) are already known, as part of the original array

elements.

Now suppose the partial sum query is Psum(A; I) where I = f0; 2; 3; 4g, i.e., corresponding

to the vector (10111). We can derive its partial sum as the sum of the precomputed partial sum

corresponding to codeword (00111) and the value of A[0]. In fact, any partial sum Psum(A; I)

for this example can be derived as some precomputed partial sum plus or minus some array value.

This is because the radius of the (5; 7; 1)-covering code is 1. We are now ready to relate covering

codes to the partial-sum problem formally.

3.2 Using Covering Codes to Solve Partial Sums

Given a length-m covering code C and any m-bit vector V , we use ft(m) and fs(m) to denote the

time and associated space overheads, respectively, in deriving the index to codeword in C that is

closest to V . Note that ft(m) and fs(m) may depend on certain property of the code, in addition

6

weight Vector the closest codeword dist.

0 (00000) itself 0

1 R�(00001) (00000) or itself 0 or 1

(00)jR�(011) (00111) 1

2 (01)jR�(001) (01000) 1

(10)jR�(001) (10000) 1

(11000) (01000) or (10000) 1

(00111) itself 0

(01110) (11110) 1

(11100) (11110) or (11101) 1

(11001) (11011) or (11101) 1

3 (10011) (11011) 1

(01011) (11011) 1

(10110) (11110) 1

(01101) (11101) 1

(11010) (11011) or (11110) 1

(10101) (11101) 1

(01111) (00111) 1

(11110) itself 0

4 (11101) itself 0

(11011) itself 0

(10111) (00111) 1

5 (11111) any weight-4 codeword 1

Table 1: The (5; 7; 1)-covering code f(00000); (00111), (10000); (01000); (11011); (11101); (11110)g.

R�(V) denotes any bit-rotation of vector V and \j" denotes concatenation of two bit strings.

7

to the length of the codeword. However, for notational simplicity, we omit the parameter C in ft

and fs.

For convenience, we de�ne an m-bit mask of I as mask(I) = (b0b1 � � �bm�1) where bi = 1 if

i 2 I , and bi = 0 otherwise. Also, if V = mask(I), then the set I will be called the support of vector

V , denoted support(V) = I . (Support and mask are inverse functions). For instance, if m = 5,

I = f0; 1; 3g then mask(I) = (11010). Also, support((11010)) = f0; 1; 3g.

Lemma 1 Given an (m;K;R)-covering code with c codewords of Hamming weight 1 or 0 in the

code, we can construct an algorithm to derive the partial sum Psum(A; I) in time T = R+ft(m)+1

and in space S = m+K � c+ fs(m).

Proof: Denote the K codewords (vectors) by V1; V2; � � � ; VK. Let Ii = support(Vi). Without

loss of generality, assume that the c codewords with weight 1 or 0 are the �rst c on the list.

(Thus, the partial sum for each of I1; I2; � � � ; Ic is already known as they correspond to entries in

array A.) We will precompute and store the partial sums for K � c di�erent subsets speci�ed by

Ic+1; Ic+2; � � � ; IK, respectively. This requires a space overhead of K � c. Given an index subset

parameter I at run time, let V = mask(I). We �rst �nd an index i such that Vi is the closest

codeword from V . This requires a time overhead of ft(m) and a space overhead of fs(m). Then, we

access the precomputed Psum(A; Ii) in one step. Since V is at most distance R away from Vi (due

to the property of an (m;K;R)-covering code), the partial sum Psum(A; I) can be obtained from

Psum(A; Ii) by accessing and adding or subtracting up to R elements of A, which correspond to

the 1-bit positions of V
 Vi. Thus, the time overhead for this modi�cation is at most R. Overall,

we have T = R+ ft(m) + 1 and S = m+K � c+ fs(m). 2

3.3 Reducing Space Overhead

Recall that array A is of size m. The above lemma applies any covering code of length m to

the entire array. However, many covering codes have small R and large K relative to m [GS85]

[CLS86] [CLLM97]. Applying these covering codes directly to the entire array typically yields an

unreasonable space overhead, even though the time is much improved. Furthermore, the space

overhead depends on the array size m. In the following theorem, we will partition the array into

blocks of size n and apply length-n covering codes to each block.

Theorem 2 Given an (n;K;R)-covering code with c codewords of Hamming weight 1 or 0 in the

8

code, we can construct an algorithm to derive the partial sum Psum(A; I) in time T � (R+ft(n)+

1)m
n
and in space S � (n +K � c)m

n
+ fs(n).

Proof: Assume �rst that m is a multiple of n. Logically partition the array A into m=n blocks

of size n each. Let x = m=n. Denote them as A0; � � � ; Ax�1. Also partition I into I0; � � � ; Ix�1.

Then, Psum(A; I) =
Px�1

i=0 Psum(Ai; Ii). To derive Psum(Ai; Ii) for each 0 � i < x, we apply

the algorithm constructed in Lemma 1, which incurs overhead Ti = R + ft(n) + 1 in time and

Si = n+K � c+ fs(n) in space. The space overhead fs(n) is the same for all i's because the same

covering code is applied. Thus, the overall time complexity is T =
Px�1

i=0 Ti = (R + ft(n) + 1)m
n

and the overall space overhead is S = (
Px�1

i=0 (Si � fs(n))) + fs(n) = (n+K � c)m
n
+ fs(n). When

m is not a multiple of n, we can extend the array A to a size m0 = dm=nen by padding m0 �m

elements of value 0. This introduces the approximation sign in the complexities of T and S. 2

By comparing the time and space complexities of this theorem to that of Lemma 1, it may

appear that both time and space complexities are worse in this theorem. Note, however, that R is

a function of the vector length (m or n) for a �xed K.

3.4 Implementation Using Look-up Tables

In this subsection, we give a concrete example of implementation based on Theorem 2 and give

a general estimate of the time and space overhead (ft(n) and fs(n)) through the use of look-up

tables.

We assume m is a multiple of n. (If not, we can extend the size of A to dm=nen by padding

zero elements to A.) First, we will restructure A as a two-dimensional array A[i; j], where i indexes

a block, 0 � i < dm=ne, and j indexes an element of A within the block, 0 � j < n. Thus, the new

A[i; j] is the same as the old A[ni+ j]. Then, for each block i, we precompute the K � c partial

sums and store their value in A[i; j] for n � j < n + K � c in some arbitrary order (though the

order is the same for all blocks).

The augmented two-dimensional array A is a partial-sum look-up table including the original

elements of A (i.e., all n codewords with a Hamming weight 1 for each block) and selected precom-

puted partial sums for each block of A. Table 2 shows an example of the partial-sum look-up table

for the i-th block of A, based on the (5; 7; 1)-covering code described in Table 1. The codewords

of the (5; 7; 1)-covering code are marked with \�" in the table. Also note that codeword (00000)

is not needed in the table because the corresponding partial-sum is 0, which can be omitted. The

9

Vector Initial or precomputed value

[i; 0] (10000)� A[5i]

[i; 1] (01000)� A[5i+ 1]

[i; 2] (00100) A[5i+ 2]

[i; 3] (00010) A[5i+ 3]

[i; 4] (00001) A[5i+ 4]

[i; 5] (00111)� A[5i+ 2] +A[5i+ 3] + A[5i+ 4]

[i; 6] (11011)� A[5i] +A[5i+ 1] + A[5i+ 3] +A[5i+ 4]

[i; 7] (11101)� A[5i] +A[5i+ 1] + A[5i+ 2] +A[5i+ 4]

[i; 8] (11110)� A[5i] +A[5i+ 1] + A[5i+ 2] +A[5i+ 3]

Table 2: The partial-sum look-up table for the i-th block of A based on the (5; 7; 1)-covering code.

The codewords of the (5; 7; 1)-covering code are marked with \�". Also, (00000) is not needed.

second column in the table is included for clarity only and is not needed in the look-up table.

There are dm=ne such tables, one for each block and each of size n +K � c. Thus, a total of size

(n+K � c) dm=ne is needed for the partial-sum look-up table.

Second, we will create an index look-up table with 2n � 1 entries, indexed from 1 to 2n � 1. For

each entry, we store a list of (index, sign)-pairs, denoted (j1; s1); (j2; s2); � � �, so that the partial sum

of the i-th block with vector V can be derived as
P
(sx � A[i; jx]) for all (jx; sx)-pairs de�ned in

the list. Note that the list has at most R+ 1 pairs. Following the same example, Table 3 gives an

example of the index look-up table. In the table, an index of \�1" marks the end of the list and a

question mark \?" implies a don't-care value. As before, the \vector-column" is included here for

clarity only and is not needed in the look-up table. Also, it is possible to build the table so that

the sign for the �rst index is always positive (such as the example given) and can be omitted.

As an example, assume the i-th block of I is (00011). We use the value of (00011), which is

3, to index this table. According to the table, the partial sum corresponding to (00011) in the

i-block can be derived by A[i; 3] + A[i; 4]. Then, from Table 2, A[i; 3] and A[i; 4] are pre-stored

with values A[5i+ 3] and A[5i+ 4], respectively. As another example, assume the i-th block of I

is (01011). According to Table 3, the partial sum is A[i; 6]� A[i; 0], which, according to Table 2,

yields (A[5i] + A[5i+ 1] + A[5i+ 3] + A[5i+ 4])� A[5i] = A[5i+ 1] + A[5i+ 3] + A[5i+ 4]. The

10

Index Vector 1st index 1st sign 2nd index 2nd sign

1 (00001) 4 +1 �1 ?

2 (00010) 3 +1 �1 ?

3 (00011) 3 +1 4 +1

4 (00100) 2 +1 �1 ?

5 (00101) 2 +1 4 +1

6 (00110) 2 +1 3 +1

7 (00111) 5 +1 �1 ?

8 (01000) 1 +1 �1 ?

9 (01001) 1 +1 4 +1

10 (01010) 1 +1 3 +1

11 (01011) 6 +1 0 �1

12 (01100) 1 +1 2 +1

13 (01101) 7 +1 0 �1

14 (01110) 8 +1 0 �1

15 (01111) 5 +1 1 +1

16 (10000) 0 +1 �1 ?

17 (10001) 0 +1 4 +1

18 (10010) 0 +1 3 +1

19 (10011) 6 +1 1 �1

20 (10100) 0 +1 2 +1

21 (10101) 7 +1 1 �1

22 (10110) 8 +1 1 �1

23 (10111) 5 +1 0 +1

24 (11000) 0 +1 1 +1

25 (11001) 7 +1 2 �1

26 (11010) 8 +1 2 �1

27 (11011) 6 +1 �1 ?

28 (11100) 8 +1 3 �1

29 (11101) 7 +1 �1 ?

30 (11110) 8 +1 �1 ?

31 (11111) 8 +1 4 +1

Table 3: The index look-up table.

11

size of the index look-up table is bounded by fs(n) = O(2nR) from above.

With the implementation of the index look-up table, the time overhead for �nding the closest

codeword of an n-bit vector, ft(n), becomes the time to index an array of 2n entries. Since the

same covering code is used for all blocks, the same index look-up table will be used for indexing

for all blocks.

4 Applying Known Covering Codes

In this section, we will apply some known covering codes to the partial-sum problem based on

Theorem 2. Di�erent covering codes lead to di�erent look-up tables and hence di�erent space-time

trade-o�s. We have chosen (n;K;R)-covering codes with combinations of minimum radius R and

minimum number of codewords K, given the length of codewords n. Speci�cally, we consider four

classes of codes: two classes for two di�erent generalizations of Hamming code (7; 16; 1), one class

for the generalization of (5; 7; 1) code, and one class for the generalization of (6; 12; 1) code. These

are the only codes that yielded useful (s; t)-pairs amongst all the codes included in [GS85], [CLS86],

and [CLLM97].

4.1 The (7 + 2i; 16; i + 1)-Covering Codes

It was shown in [GS85] that the (7; 16; 1) Hamming code can be generalized to (7 + 2i; 16; i+ 1)-

covering codes, for all i � 0. For example, (9; 16; 2) and (11; 16; 3) are in this family of codes.

4.2 The (n+ i; 2iK;R)-Covering Codes

An (n;K;R)-covering code can also be extended to an (n + i; 2iK;R)-covering code simply by

replicating the same set of codewords 2i times, each in a copy of the 2n vectors. Thus, (7; 16; 1)

Hamming code also generalizes to (7 + i; 2i+4; 1)-covering codes for all i � 0. However, for many

n � 9, better (n;K; 1)-covering codes than the naive extension from (7; 16; 1) are known [CLS86]

[CLLM97]. In particular, (9; 62; 1) is such a code included in [CLLM97].

4.3 Piecewise Constant Codes

A family of codes, called piecewise constant codes, was introduced in [CLS86]. We include its

de�nition and give an example here for easy reading.

12

00 000

00 111

10 000

01 000

11 011

11 101

11 110

Table 4: A (5; 7; 1) piecewise constant code as a covering code.

First, the length n of a codeword is partitioned into t parts: n = n1 + n2 + � � � + nt. Each

codeword c is partitioned in the same way, as

c = (c(1); c(2); � � � ; c(t))

where length (c(i)) = ni. Then C is a piecewise constant code if it has the property that \if C

contains one word with weights

wt(c(1)) = w1; � � � ; wt(c
(t)) = wt;

then it contains all such words".

For example, Table 4 shows a piecewise constant code of length n = 5 corresponding to the

partition n = n1 + n2 where n1 = 2 and n2 = 3. There are seven codewords, corresponding to the

weights

w1 = 0; w2 = 0; 1 word;

w1 = 0; w2 = 3; 1 word;

w1 = 1; w2 = 0; 2 words;

w1 = 2; w2 = 2; 3 words:

Any piecewise constant code of length 5 partitioned as 5 = n1 + n2 = 2 + 3 can be represented

by a subset of the two-dimensional array of cells shown in Figure 2. The cell at position (w1; w2)

represents the set of vectors c = (c(1); c(2)) with wt(c(1)) = w1; wt(c(2)) = w2. There are
n1
w1

!
n2
w2

!
=

2

w1

!
3

w2

!

13

1 3 3 1

2 6 6 2

1 3 3 1

0 1 2 3

0

1

2

w2

w1

Figure 2: Two-dimensional array representing the (5; 7; 1) covering code of Table 4.

such vectors, and this number is written in the cell. A piecewise constant code is then speci�ed

by circling some of the cells in the array, and the number of codewords is the sum of the circled

numbers. The four circled cells in Figure 2 represent the code of Table 4, and there are a total of

seven codewords.

Piecewise constant codes have the desirable property that the covering radius R is easy to

calculate from this array of cells. This is because radius R is simply the maximal distance of

any cell from the code (i.e., from the nearest circled cell), when the distance between two cells is

measured in the Manhattan metric. In Figure 2, the Manhattan distance between two cells is the

number of horizontal and vertical steps needed to move from one to the other. It is clear that in

Figure 2 every cell is within Manhattan distance 1 of a circled cell, so the covering radius R is 1.

Thus, we have an (n;K;R) = (5; 7; 1) covering code.

A second example of a piecewise constant code is given in Table 5 and Figure 3. This corresponds

to the partition 6 = 3+ 3 and contains 12 codewords. Figure 3 shows the \spheres" of Manhattan

radius 1 around the codewords, proving that R = 1. Thus, we have an (n;K;R) = (6; 12; 1)

covering code.

4.4 The (2R + 3; 7; R)-Covering Codes

Figure 4 shows a family of piecewise constant codes, given in [CLS86], which are (2R + 3; 7; R)-

covering codes. The code is partitioned into three parts: n = (2R � 1) + 3 + 1 = 2R + 3. The

�gure shows certain key boundaries of the Manhattan spheres of radius R. Each region is marked

by the codeword(s) covering it. Recall that the number of codewords, 7, is the sum of the circled

14

000 100

000 010

000 001

100 111

010 111

001 111

011 000

101 000

110 000

111 011

111 101

111 110

Table 5: A (6; 12; 1) piecewise constant code as a covering code.

1 3 3 1

3 9 9 3

3 9 9 3

1 3 3 1

0 1 2 3

w2

0

1

2

3

w1

Figure 3: Two-dimensional array representing the (6; 12; 1) covering code of Table 5 and showing

the Manhattan \spheres" of covering radius 1 around the circled cells.

15

1 3 3 1 1 3 3 1

1 3 3 1 1 3 3 1

0

1

2

:

R

:

2R−2

2R−1

w1

0 1 2 3
w2

0 1 2 3
w2

w3 = 0 w3 = 1

:

:

c1 c2 c3

c4 c5

c1 or c2 c3

c5

c5

c5

c2

c1&

c4

c4

Figure 4: Three-dimensional array showing a family of piecewise constant codes as the (2R+3; 7; R)-

covering codes.

numbers. In fact, the family of (2R+ 3; 7; R)-covering codes can be viewed as a generalization of

the (5; 7; 1) code (Table 4) through an amalgamated direct sum technique described in [GS85] and

[CLS86].

4.5 The (2R + 4; 12; R)-Covering Codes

Figure 5 shows another family of piecewise constant codes, which are (2R+4; 12; R)-covering codes.

The code is partitioned into three parts: n = (2R � 2) + 3 + 3 = 2R + 4. As before, the �gure

shows certain key boundaries of the Manhattan spheres of radius R and each region is marked by

16

the codeword(s) covering it. Formally, the family of (2R+ 4; 12; R)-covering codes can be viewed

as a result of applying the amalgamated direct sum of (6; 12; 1) code with (3; 2; 1) code iteratively

[GS85] [CLS86].

4.6 Results

The results of applying the above codes to the partial-sum problem are summarized in Table 6. The

results show a spectrum of space-time trade-o�s and one can choose an operating point depending

upon the objective. Recall that we de�ned the total space required, including the original array

of size m, as sm. (That is, s � 1 is the multiplicative overhead.) There is, however, an additive

overhead of fs(n) = O(2nR) not included in this and subsequent tables with an s-column.

5 Single-Weight-Extended Covering Codes

In this section, we will modify the property of covering codes to better re
ect the partial-sum

problem. We will �rst de�ne a new type of covering codes, which we shall call the single-weight-

extended covering codes. Then we present a general theorem relating this type of covering codes to

the partial-sum problem. Finally, we will devise a class of covering codes of this type.

5.1 Specialized Covering Codes for Partial Sums

In applying existing (n;K;R)-covering codes to the partial-sum problem in the previous section,

we chose codes with combinations of minimum radius R and minimum number of codewords K,

given the length of codewords n. Minimizing the time for the partial-sum problem is di�erent from

minimizing the covering radius R given length n and K codewords of an (n;K;R)-covering code in

two ways. First, the all-0 vector (00 � � �0) need not be covered (since the corresponding partial sum

is always 0). Second, the n weight-1 vectors can be included in the covering code without space

cost since they are present in array A, which may reduce R.

We, therefore, de�ne the single-weight-extended covering code. To derive e�cient algorithms

for partial sums, our new objective is to derive (n;K0; R)+-covering codes with combinations of

minimum R and K0, for various given small n.

De�nition 1 A binary code C is an (n;K0; R) single-weight-extended covering code, denoted

(n;K0; R)+-covering code, if (1) each codeword is of length n; (2) there are K 0 codewords in C;

17

1 3 3 1

1 3 3 1

0

1

2

:

R

:

2R−2

2R−1

w1

0 1 2 3
w2

0 1 2 3
w2

w3 = 0 w3 = 1

:

0 1 2 3
w2

0 1 2 3
w2

w3 = 2 w3 = 3

R−1

1 3 3 1

1 3 3 13 9 9 3 3 9 9 3

3 9 9 33 9 9 3

c1
c1

c2

c3 c4

c1

c2
c2

c3
c3 c4

c4

c4

c4 c3

c3

Figure 5: Three-dimensional array showing a family of piecewise constant codes as the (2R +

4; 12; R)-covering codes.

18

n K R c s t ref.

m 2 m=2 1 1 + 1=m 0.50

odd n 7 (n� 3)=2 2 1 + 5=n 0:5� 1
2n x 4.4

19 7 8 2 1.26 0.474 x 4.4

17 7 7 2 1.29 0.471 x 4.4

15 7 6 2 1.33 0.467 x 4.4

13 7 5 2 1.38 0.462 x 4.4

11 7 4 2 1.45 0.45 x 4.4

9 7 3 2 1.56 0.44 x 4.4

7 7 2 2 1.71 0.43 x 4.4

14 12 5 3 1.64 0.43 x 4.5

12 12 4 3 1.75 0.42 x 4.5

5 7 1 3 1.80 0.40 x 4.4

8 12 2 3 2.13 0.38 x 4.5

11 16 3 1 2.36 0.36 x 4.1

6 12 1 3 2.50 0.33 x 4.5

7 16 1 1 3.14 0.29 x 4.1

8 32 1 1 4.88 0.25 x 4.2

9 62 1 1 7.78 0.22 x 4.2

Table 6: Best choices of S and T based on existing covering codes.

19

and (3) letting C 0 = C [fR�(00 � � �01)g, i.e., C extended with all n weight-1 vectors, the covering

radius of the code C 0 is R.

Since the all-0 vector is always distance one from any weight-1 vector and R � 1 for all our

cases, covering the all-0 vector (to be consistent with the de�nition of covering codes) does not

increase the complexities of K0 and R of the code. Clearly, an (n;K;R)-covering code is also an

(n;K � c; R)+-covering code. We will use K0 throughout this section to denote the number of

codewords excluding the all-0 vector and all weight-1 vectors.

Theorem 3 Given an (n;K 0; R)+-covering code, we can construct an algorithm to derive the par-

tial sum Psum(A; I) in time T � (R+ ft(n) + 1)m
n
and in space S � (n+K0)m

n
+ fs(n).

Proof: Follows from Theorem 2 and De�nition 1. 2

5.2 The (2R + 3; 4; R)+-Covering Codes

We now give a construction of a (2R + 3; 4; R)+-covering code C for all R � 1 and prove its

correctness. The construction can be de�ned by Figure 6, which is modi�ed from Figure 4 by

taking into account that all weight-1 codewords will be included. In Figure 6, the 2R+ 3 weight-1

codewords are represented by the three dashed circles ((2R� 1)+ 3+ 1 = 2R+3), and denoted by

c5; c6 and c7. The K
0 = 4 codewords are denoted as c1; � � � ; c4, respectively. As before, each region

is marked by the codeword(s) covering it.

We now give a formal de�nition and proof of a (2R+ 3; 4; R)+-covering code for any positive

integer R. Recall that each codeword has 2R + 3 bits. We will use Y to denote the all-1 vector

(11 � � �1) of length 2R� 1 and use Z to denote the all-0 vector (00 � � �0) of length 2R� 1. The, the

four codewords in the (2R+ 3; 4; R)+-covering code, consistent with Figure 6, can be denoted as

C = fc1 = (Zj1111); c2 = (Y j1111);

c3 = (Y j1110); c4 = (Y j0001)g:

Theorem 4 The code C de�ned above is a (2R+ 3; 4; R)+-covering code.

Proof: Consider any vector V of length 2R+3. Partition the vector V into three subvectors, from

left to right: V1 of length 2R � 1, V2 of length 3, and V3 of length 1. Let w1, w2 and w3 be the

Hamming weight of V1, V2 and V3, respectively. Let W be the set of all length-(2R + 3) weight-1

20

1 3 3 1 1 3 3 1

1 3 3 1 1 3 3 1

0

1

2

:

R

:

2R−2

2R−1

w1

0 1 2 3
w2

0 1 2 3
w2

w3 = 0 w3 = 1

:

:

2R−1

c1

c2c3 c4

c4 or c2
c3

c5

c6 c7

c5 or c6 c7 or c1

Figure 6: Three-dimensional array showing a family of piecewise constant codes as the (2R +

3; 4; R)+-covering codes.

21

vectors, i.e., W includes c5; c6; c7 of the �gure. Recall from De�nition 1 that the covering radius of

a single-weight-extended covering code is de�ned with respect to C [W . Consider the following 3

cases that cover all combinations of V :

Case 1: w3 = 0. If w1+w2 � R+2 (the lower left region of the �gure) then the Hamming distance

of V and c3 = (Y j1110) is at most (2R+2)� (R+2) = R. Otherwise (the upper left region),

w1+ w2 � R+ 1 and there exists a vector in W whose Hamming distance is at most R from

V .

Case 2: w3 = 1 and w1 � R � 1 (the upper right region). If w2 � 1 then the Hamming distance

between V and c7 = (Zj0001) 2 W is Hamming(V1; Z) + w2 = w1 + w2 � (R � 1) +

1 = R. Otherwise, w2 � 2 and the Hamming distance between V and c1 = (Zj1111) is

Hamming(V1; Z) + (3� w2) � (R� 1) + 1 = R.

Case 3: w3 = 1 and w1 � R (the lower right region). If w2 � 1 then the Hamming distance between

V and c4 = (Y j0001) is Hamming(V1; Y) +w2 � ((2R� 1)�R) + 1 = R. Otherwise, w2 � 2

and the Hamming distance between V and c2 = (Y j1111) is Hamming(V1; Y) + (3 � w2) �

((2R� 1)�R) + 1 = R.

2

5.3 Results

Table 7 summarizes the best (s; t)-pairs obtained based on the previous Table 6 and the class of

new codes devised in this section. Note that the (14; 12; 5)-covering code from Table 6 is removed

from the new table because the new (7; 4; 2)+-covering code has a better (s; t)-pair.

6 Further Improvements

We now further modify the de�nition of the covering code by adding a composition function,

resulting in a new class of codes, which we shall call composition-extended covering codes. The

main result (space and time overheads) for the partial-sum problem implied by the new class of

covering codes is described in Theorem 6. The key to the new class of codes is that a partial

sum may be written by a sum or di�erence of two other partial sums. Thus, some e�cient coding

scheme can be implemented using this.

22

n K R c K0 s t ref.

m 2 m=2 1 - 1 + 1=m 0.50

odd n - (n � 3)=2 - 4 1 + 4=n 0:5� 1

2n
x 5.2

19 - 8 - 4 1.21 0.474 x 5.2

17 - 7 - 4 1.24 0.471 x 5.2

15 - 6 - 4 1.27 0.467 x 5.2

13 - 5 - 4 1.31 0.462 x 5.2

11 - 4 - 4 1.36 0.45 x 5.2

9 - 3 - 4 1.44 0.44 x 5.2

7 - 2 - 4 1.57 0.43 x 5.2

12 12 4 3 - 1.75 0.42 x 4.5

5 7 1 3 - 1.80 0.40 x 4.4

8 12 2 3 - 2.13 0.38 x 4.5

11 16 3 1 - 2.36 0.36 x 4.1

6 12 1 3 - 2.50 0.33 x 4.5

7 16 1 1 - 3.14 0.29 x 4.1

8 32 1 1 - 4.88 0.25 x 4.2

9 62 1 1 - 7.78 0.22 x 4.2

Table 7: Best choices of S and T based on existing and single-weight-extended covering codes.

23

6.1 Covering Codes with Composition Function

Let 	 be the bit-wise or operator, � the bit-wise and operator, and
 the bit-wise exclusive-or

operator. Let ? denote an unde�ned value.

De�nition 2 De�ne a composition function of two binary vectors V and V 0 as follows:

comp(V; V 0) = V � V 0 =

8>>>>><
>>>>>:

V 	 V 0; if V � V 0 = 0;

V
 V 0; if V � V 0 = V

or V � V 0 = V 0;

?; otherwise.

For examples, comp((001); (011)) = (010), comp((001), (010)) = (011)) and comp((011); (110)) =

?. The intuition behind this function lies in the following lemma:

Lemma 5 Let V; V 0 be two n-bit vectors where V 00 = comp(V; V 0) 6= ?. Also let I; I 0, and

I 00 be support(V), support(V 0), and support(V 00), respectively. Then, given Psum(A; I) and

Psum(A; I 0), one can derive Psum(A; I 00) in one addition or subtraction operation.

Proof: By De�nition 2, it can be shown that

Psum(A; I 00) =8>><
>>:
Psum(A; I) + Psum(A; I 0); if V � V 0 = 0;

Psum(A; I 0)� Psum(A; I); if V � V 0 = V ;

Psum(A; I)� Psum(A; I 0); if V � V 0 = V 0.

2

For consistency, we will let comp(V; V 0) = ? if either V = ? or V 0 = ?. (All other rules still

follow De�nition 2.) We assume � operator associates from left to right, i.e., V � V 0 � V 00 = (V �

V 0)�V 00. Note that � is commutative, but not associative. For instance, (1100)�(1101)�(1010) =

(1011), while (1100)� ((1101)� (1010)) = ?.

De�nition 3 A binary code C is an (n;K00; R) composition-extended covering code, denoted (n;K 00; R)�-

covering code, if (1) each codeword is of length n, (2) there are K 00 codewords in C, and (3) every

length-n non-codeword vector V 62 C can be derived by up to R compositions of R+ 1 codewords,

i.e.,

V = C1 � C2 � � � � � Ci+1;

for 1 � i � R, Ci 2 C.

24

weight Vector the composition min distance

(0001) (0111)� (0110) 1

1 (0010) (0111)� (0101) 1

(0100) (0111)� (0011) 1

(1000) itself 0

(0011) itself 0

(0110) itself 0

2 (1100) (1111)� (0011) 1

(1001) (1111)� (0110) 1

(0101) itself 0

(1010) (1111)� (0101) 1

(0111) itself 0

3 (1110) (1000)� (0110) 1

(1101) (1000)� (0101) 1

(1011) (1000)� (0011) 1

4 (1111) itself 0

Table 8: The (4; 6; 1)�-covering code.

For example, consider a code C = fC1 = (1111); C2 = (0111); C3 = (0110); C4 = (0101); C5 =

(0011); C6 = (1000)g. It can be veri�ed from Table 8 that this code is a (4; 6; 1)�-covering code.

Clearly, an (n;K 0; R)+-covering code is also an (n;K0+n;R)�-covering code, but not vice versa.

We will use K00 throughout this section to denote the total number of codewords. Note that the

code may not contain all weight-1 vectors as codewords. However, in our computer search we

minimize K00 �rst given n and R, then maximize the total number of weight-1 vectors among all

minimum-K00 solutions. We were able to �nd a minimum-K 00 solution with all n weight-1 vectors

included as codewords for all cases listed below.

Given an (n;K00; R)�-composition-extended covering code C and any n-bit vector V , we will

rede�ne ft(n) and fs(n) as the time and associated space overheads, respectively, to �nd the

set of codewords C1; � � � ; Ci+1 and its precomputed corresponding partial sums such that V =

C1 � C2 � � � � � Ci+1 where 0 � i � R.

25

Theorem 6 Given an (n;K 00; R)�-covering code, we can construct an algorithm to derive the par-

tial sum Psum(A; I) in time T � (R+ ft(n) + 1)m
n
and in space S � K00m

n
+ fs(n).

Proof: We �rst show that given an (m;K00; R)�-covering code C, we can construct an algorithm

to derive the partial sum Psum(A; I) in time T = R + ft(m) + 1 and in space S = K 00 + fs(m).

We will precompute and store the K 00 partial sums of A that correspond to the K 00 codewords.

Given an index subset I at run time, let V = mask(I). By De�nition 3, we can assume V =

C1 �C2� � � ��Cx+1 where 0 � x � R and Cx 2 C. Let Ii = support(Ci) for all 1 � i � x+ 1. By

Lemma 5, we can derive Psum(A; I) by combining Psum(A; Ii)'s through addition or subtraction

for all 1 � i � x+ 1. This requires an overhead of ft(m) +R+ 1 in time and fs(m)+K 00 in space.

The rest of the proof is similar to that of Theorem 2 by applying the time and space overhead to

each block of A of size n. 2

6.2 Lower Bounds on K 00

Lemma 7 Let Si 2 f+1;�1g, 1 � i � x. If C1 � C2 � � � � � Cx = V 6= ?, then there exists a set

of Si's such that S1C1 + S2C2 + � � �+ SxCx = V , where the addition is bit-wise.

Proof: By De�nition 3 and the fact that V 6= ?, we have C1�C2 2 fC1+C2;�C1+C2; C1�C2g.

By applying the same argument to the sequence C1 � C2 � � � � � Cx, the proof follows. 2

Lemma 8 Let � be a permutation function of f1; 2; � � � ; xg. If C1 � C2 � � � � � Cx = V 6= ? and

C�(1) � C�(2) � � � � � C�(x) = V 0 6= ?, then V = V 0.

Proof: Let Si 2 f+1;�1g be the sign associated with Ci in order to derive V , Lemma 7. That

is,
Px

i=1 SiCi = V . Let S be the ordered set fS1; S2; � � � ; Sxg. Assume that V 6= V 0. Then, there

exists a new ordered set S0 = fS01; S
0
2; � � � ; S

0
xg such that

Px
i=1 S

0
iCi = V 0 and S0 6= S (i.e., S0i 6= Si

for some i 2 f1; 2; � � � ; xg). The set S0 can be derived from the set of S by changing all di�erent

(Si; S0i)-pairs. Note, however, that every change of sign from Si to S0i will result in a \distance-2" or

\distance-0" move of all digits in V . More speci�cally, the j-th digit with value v will be changed

to one of fv + 2; v; v� 2g, depending on the j-th bit of Ci. Thus, a digit which is even (positive,

0, or negative) remains even due to the changes of signs. Similarly, a digit which is odd (positive

or negative) remains odd. For instance, a 0-digit in V will be changed to one in f�2; 0; 2g due to

26

one sign change, while a 1-digit will be changed to one in f�1; 1; 3g. Since 0 is the only valid even

digit of any de�ned vector and 1 is the only valid odd digit of any de�ned vector, V = V 0. 2

In the above proof, it is possible that V = V 0 while S 6= S 0. In this case, there must be some

number of codewords which compose to an all-0 vector.

Theorem 9 Any (n;K 00; R)�-covering code must have

R+1X
i=1

K00

i

!
� 2n � 1:

Proof: Follows from Lemma 8. 2

Corollary 10 Any (n;K 00; 1)�-covering code must have

K00(K00 + 1)

2
� 2n � 1:

Corollary 11 Any (n;K 00; 2)�-covering code must have

K00(K002 + 5)

6
� 2n � 1:

6.3 Some useful composition-extended covering codes

To �nd \good" composition-extended covering codes, we implemented a computer search program

based on various heuristics to search in selected subspace than an exhaustive one. In the following,

we list the best composition-extended covering codes that we found so far, each is a result of a run

of at least one day on a typical workstation. It may be possible to improve these codes by having

longer runs.

6.3.1 The (6; 13; 1)�-Covering Code

C = f1; 2; 4; 6; 8; 16; 25; 32; 34; 36; 47; 55; 62g:

This code improves from previous K00 = K� c+n = 15 (due to (6; 12; 1)-covering code in x 4.5)

to 13. The number of weight-1 codewords is 6. The lower bound on K 00 is 11, by Corollary 10.

27

6.3.2 The (7; 21; 1)�-Covering Code

C = f1; 2; 4; 8; 16; 24; 32; 33; 38; 39; 64;

72; 80; 91; 93; 94; 95; 122; 123; 124; 125g:

This code improves from previous K00 = 22 (due to (7; 16; 1) Hamming code in x 4.1) to 21.

The number of weight-1 codewords is 7. The lower bound on K 00 is 16, by Corollary 10.

6.3.3 The (8; 29; 1)�-Covering Code

C = f1; 2; 3; 4; 8; 16; 17; 18; 19; 32; 64; 76; 100; 108; 128; 129;

130; 131; 144; 145; 146; 159; 183; 187; 191; 215; 219; 243; 251g:

This code improves from previous K00 = 39 (due to (8; 32; 1)-covering code in x 4.2) to 29. The

number of weight-1 codewords is 8. The lower bound on K00 is 23, by Corollary 10.

6.3.4 The (9; 45; 1)�-Covering Code

C = f1; 2; 3; 4; 8; 16; 17; 18; 19; 32; 36; 40; 44; 64;

68; 96; 100; 104; 128; 132; 136; 140; 160; 232; 236;

256; 257; 258; 259; 272; 273; 274; 287; 347; 351;

383; 439; 443; 447; 467; 471; 475; 479; 499; 503g:

This code improves from previous K00 = 70 (due to (9; 62; 1)-covering code in x 4.2) to 45. The

number of weight-1 codewords is 9. The lower bound on K00 is 32, by Corollary 10.

6.3.5 The (8; 15; 2)�-Covering Code

C = f1; 2; 3; 4; 8; 16; 32; 33; 34; 64; 115; 128; 191; 204; 255g:

This code improves from previous K00 = 17 (due to (8; 12; 2)-covering code in x 4.5) to 15. The

number of weight-1 vectors is 8. The lower bound on K 00 is 12, by Corollary 11.

28

n K R c K0 K00 s t reference

m 2 m=2 1 - - 1 + 1=m 0.50

odd n - (n� 3)=2 - 4 - 1 + 4=n 0:5� 1
2n x 5.2

19 - 8 - 4 - 1.21 0.474 x 5.2

17 - 7 - 4 - 1.24 0.471 x 5.2

15 - 6 - 4 - 1.27 0.467 x 5.2

13 - 5 - 4 - 1.31 0.462 x 5.2

11 - 4 - 4 - 1.36 0.45 x 5.2

9 - 3 - 4 - 1.44 0.44 x 5.2

7 - 2 - 4 - 1.57 0.43 x 5.2

12 12 4 3 - - 1.75 0.42 x 4.5

5 7 1 3 - - 1.80 0.40 x 4.4

8 - 2 - - 15 1.88 0.38 x 6

6 - 1 - - 13 2.17 0.33 x 6

7 - 1 - - 21 3.00 0.29 x 6

8 - 1 - - 29 3.63 0.25 x 6

9 - 1 - - 45 5.00 0.22 x 6

Table 9: Best obtained choices of S and T based on all techniques.

6.4 Results

Table 9 summarizes the best (s; t)-pairs obtained based on the previous Table 7 and the new

codes given in this section. Figure 7 shows three sets of data points corresponding to the (s; t)-

pairs derived from the existing covering codes, new single-weight-extended covering codes, and new

composition-extended covering codes. Figure 1 on page 4 shows the best (s; t)-pairs combining

results from all three types of covering codes, i.e., corresponding to Table 9. Note that in

Figure 7, the data points for covering codes and those for single-weight-extended covering codes do

not overlap. For the composition-extended covering codes, the curve stops at s = 5 because the

next (s; t) point requires searching a good (10; K00; 1)�-covering code, a complicated search for little

gain in time, from 0:22 for n = 9 to 0:2 for n = 10.

29

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8

T
: T

im
e

re
qu

ire
m

en
t

S: Storage requirement

Storage and Time trade-off for computing partial sum

covering codes
single-weight-extended covering codes
composition-extended covering codes

Figure 7: Three types of (s; t) data points for computing partial sum.

7 Partial Sums for Multi-Dimensional Arrays

In this section, we will generalize the one-dimensional partial-sum algorithm to the d-dimensional

case. Assume A is a d-dimensional array of form m1 � � � � �md and let m =
Qd

i=1mi be the total

size of A. Let M be the index domain of A. Let D = f1; : : : ; dg be the set of dimensions. For each

i 2 D, let Ii be an arbitrary subset of f0; : : : ; mi � 1g speci�ed by the user at query time. Also let

I = f(x1; : : : ; xd) j (8i 2 D)(xi 2 Ii)g. That is, I = I1 � � � � � Id and I �M .

Given A in advance and I during the query time, we are interested in getting partial sum of A,

speci�ed by I as:

Psum(A; I) =
X

8(x1;:::;xd)2I

A[x1; : : : ; xd]:

7.1 A Motivating Example

Before giving the general d-dimensional algorithm and theorem, we �rst give a motivating 2-

dimensional example. Assume A is a two-dimensional array of form 5 � 5. Also assume that

we are applying the (5; 7; 1)-covering code, which is also a (5; 9; 1)+-single-weight-extended cover-

ing code, to each dimension. Denote the 9 codewords by C0 through C8, consistent with the order

in Table 2. The index look-up table, denoted by X , is still the same as that for the one-dimensional

case, Table 3. On the other hand, the partial-sum look-up table will be extended from Table 2

(which has 9 entries) to a two-dimensional table, denoted by P , of 9� 9 entries. Then, we will let

P [i; j] contain the precomputed partial sum Psum(A; support(Ci)� support(Cj)).

30

index partial sum

(3; 6) A[3; 0] + A[3; 1] +A[3; 3] + A[3; 4]

(4; 6) A[4; 0] + A[4; 1] +A[4; 3] + A[4; 4]

(3; 0) A[3; 0]

(4; 0) A[4; 0]

Table 10: Examples of indexed partial sums in the partial-sum look-up table.

For convenience, we will view each entry of X as a set of (sign, index) pairs. Assume given

I1 = f3; 4g and I2 = f1; 3; 4g at query time. We use mask(I1), which is (00011) = 3, as an

index to the index look-up table X and obtain X [mask(I1)] = f(+1; 3); (+1; 4)g. Also, we use

mask(I2), which is (01011) = 11, as an index to the same index look-up table X and obtain

X [mask(I2)] = f(+1; 6); (�1; 0)g. We will show later that Psum(A; I) can be computed as follows.

Psum(A; I) =
X

8 (si;xi)2X [mask(Ii)]

f(
Y
i2D

si)P [x1; : : : ; xd]g:

Following this, we have Psum(A; I) = P [3; 6]+P [4; 6]�P [3; 0]�P [4; 0] for our example. Intu-

itively, the �nal partial sum Psum(A; I) is derived from combination of additions and subtractions

of all \relevant entries" in P , where the \relevant entries" are Cartesian products of di�erent en-

tries indexed by X [mask(Ii)]. Table 10 shows the precomputed partial sums corresponding to the

4 terms on the right hand side of the formula. Figure 8 gives a pictorial view corresponding to the

formula. In the �gure, 1 means a selected value.

7.2 The Main Theorem

We are now ready to prove a lemma for the general case of the above example.

Lemma 12 Let B be a d-dimensional array of form n�� � ��n, and let Psum(B; I) be the partial-

sum query. Then, given an (n;K 00; R)�-covering code, we can construct an algorithm to derive

Psum(B; I) for any I in time T = (R+ 1)d + ft(n)d and in space S = K00d + fs(n).

Proof: Denote the set of K00 codewords by C = fC0; C1; : : :, CK00�1g. Let Ji = support(Ci). We

�rst construct a d-dimensional partial-sum look-up table, of formK00�� � ��K00. An entry indexed by

(x1; � � � ; xd) in the table will contain precomputed result for Psum(B; J) where J = Jx1�� � ��Jxd .

31

0 0 0 0 0

0 0 0 1 1

0 0 0 0 0

0 0 0 1 1

0 0 0 1 1

=

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0

0 0 0 1 0

+

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 1

0 0 0 0 1

�

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

�

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Figure 8: A pictorial view of Psum(A; I) = P [3; 6] + P [4; 6]� P [3; 0]� P [4; 0].

Given I at query time, let I = I1 � � � �� Id. Note that in the one-dimensional domain, each Ii can

be derived by combining up to R+ 1 existing partial sums. Through an inductive proof, one can

show that I can be derived by combining up to (R+1)d existing partial sums from the partial-sum

look-up table. For each dimension, a time overhead of ft(n) is needed to derive the index of that

dimension to the partial-sum look-up table. Thus, the overall time is T = (R+1)d+ft(n)d. For the

space overhead, the partial-sum look-up table is of size K 00d and the index look-up table is of size

fs(n). Since we apply the same covering code to all d dimensions, there is only one index look-up

table needed. Thus, the overall space overhead is S = K00d + fs(n). 2

As in the one-dimensional case, we will now partition array A into blocks of form n � � � � � n

and apply covering codes to each block (using the above lemma) in order to derive better space

overheads. The proof of the following theorem is straightforward:

Theorem 13 Given an (n;K 00; R)�-covering code, we can construct an algorithm to derive the d-

dimensional partial sum Psum(A; I) in time T � (R+1
n
)dm+ dft(n)

m
nd

and in space S � (K
00

n
)dm+

fs(n).

The above theorem assumes that the same covering code is applied to all dimensions of each

block and, thus, each block is of form n�� � ��n. In general, one can apply di�erent covering codes

to di�erent dimensions and obtain a wider range of space-time trade-o�s. In this case, the length

of each side of the block will be tailored to the length of each covering code applied.

Corollary 14 Given an (n;K 00; R)�-covering code, we can construct an algorithm to derive the

32

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8

T
: T

im
e

re
qu

ire
m

en
t

S: Storage requirement

Storage and Time trade-off for computing 2D partial sum

combination of covering codes
best choices

Figure 9: The best (s; t) data points for computing two-dimensional partial sum.

d-dimensional partial sum Psum(A; I) in time T � (R+1
n

)�(12)
d��m+ dft(n)

m
n�

and in space S �

(K
00

n
)�(1 + 1

m
)d��m+ fs(n).

Proof: Apply an (n;K 00; R)�-composition-extended covering code to � dimensions and the (mi; mi+

1; dmi=2e)
+-single-weight-extended covering code to the remaining d � � dimensions. The proof

completes by noticing that the latter code has (s; t) � (1; 0:5). 2

7.3 Results

Figure 9 shows various (s; t) data points for computing two-dimensional partial sum based on

combination of one-dimensional (s; t) data points from Table 9. The best (s; t) data points are

joined together by a curve. Note the leftmost (s; t) data point has been changed from (1; 0:5) in

Figure 1 to (1; 0:25) in this �gure.

8 Summary

Partial-sum queries obtain the summation over speci�ed cells of a data cube. In this paper, we

established the connection between the covering problem [GS85] in the theory of error-correcting

codes and the partial-sum problem. We use this connection to apply four known covering codes

from [GS85], [CLS86], and [CLLM97] to the partial-sum problem to obtain algorithms with various

space-time trade-o�s. We then modi�ed the requirements on covering codes to better re
ect the

partial-sum problem and devise new covering codes with respect to the new requirements. As

33

a result, we develop new algorithms with better space-time trade-o�s. For example, using these

algorithms, with 44% additional storage, the query response time can be improved by about 12%;

by roughly doubling the storage requirement, the query response time can be improved by about

34%.

References

[AAD+96] S. Agarwal, R. Agrawal, P.M. Deshpande, A. Gupta, J.F. Naughton, R. Ramakrishnan,

and S. Sarawagi. On the computation of multidimensional aggregates. In Proc. of the

22nd Int'l Conference on Very Large Databases, pages 506{521, Mumbai (Bombay),

India, September 1996.

[CCH+98] Latha S. Colby, Richard L. Cole, Edward Haslam, Nasi Jazayeri, Galt Johnson,

William J. McKenna, Lee Schumacher, and David Wilhite. Red brick vista: Aggre-

gate computation and management. In Proc. of the 14th Int'l Conference on Data

Engineering, pages 174{177, 1998.

[CHLL77] G.D. Cohen, I. Honkala, S. Litsyn, and A.C. Lobstein. Covering Codes. North-Hollans

Math. Lib, Vol. 54, Elsevier, 1977.

[CLLM97] G.D. Cohen, S. Litsyn, A.C. Lobstein, and H.F. Mattson Jr. Covering radius 1985{1994.

Journal of Applicable Algebra in Engineering, Communication and Computing, special

issue, 8(3), 1997.

[CLS86] G.D. Cohen, A.C. Lobstein, and N.J.A. Sloane. Further results on the covering radius

of codes. IEEE Trans. Information Theory, IT-32(5):680{694, September 1986.

[CM89] M.C. Chen and L.P. McNamee. The data model and access method of summary data

management. IEEE Transactions on Knowledge and Data Engineering, 1(4):519{29,

1989.

[Cod93] E. F. Codd. Providing OLAP (on-line analytical processing) to user-analysts: An IT

mandate. Technical report, E. F. Codd and Associates, 1993.

[CS94] S. Chaudhuri and K. Shim. Including group-by in query optimization. In Proc. of

the 20th Int'l Conference on Very Large Databases, pages 354{366, Santiago, Chile,

September 1994.

34

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation

operator generalizing group-by, cross-tabs and sub-totals. In Proc. of the 12th Int'l

Conference on Data Engineering, pages 152{159, 1996.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data ware-

housing environments. In Proceedings of the Eighth International Conference on Very

Large Databases (VLDB), pages 358{369, Zurich, Switzerland, September 1995.

[GHRU97] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Je�rey D. Ullman. In-

dex selection for OLAP. In Proc. of the 13th Int'l Conference on Data Engineering,

Birmingham, U.K., April 1997.

[GS85] R.L. Graham and N.J.A. Sloane. On the covering radius of codes. IEEE Trans. Infor-

mation Theory, IT-31(3):385{401, May 1985.

[HAMS97] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant. Range

queries in OLAP data cubes. In Proc. of the ACM SIGMOD Conference on Management

of Data, Tucson, Arizona, May 1997.

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes e�ciently.

In Proc. of the ACM SIGMOD Conference on Management of Data, June 1996.

[JS96] T. Johnson and D. Shasha. Hierarchically split cube forests for decision support: de-

scription and tuned design, 1996. Working Paper.

[Lom95] D. Lomet, editor. Special Issue on Materialized Views and Data Warehousing. IEEE

Data Engineering Bulletin, 18(2), June 1995.

[Mic92] Z. Michalewicz. Statistical and Scienti�c Databases. Ellis Horwood, 1992.

[OLA96] The OLAP Council. MD-API the OLAP Application Program Interface Version 0.5

Speci�cation, September 1996.

[SDNR96] A. Shukla, P.M. Deshpande, J.F. Naughton, and K. Ramasamy. Storage estimation

for multidimensional aggregates in the presence of hierarchies. In Proc. of the 22nd

Int'l Conference on Very Large Databases, pages 522{531, Mumbai (Bombay), India,

September 1996.

35

[SR96] B. Salzberg and A. Reuter. Indexing for aggregation, 1996. Working Paper.

[STL89] J. Srivastava, J.S.E. Tan, and V.Y. Lum. TBSAM: An access method for e�cient pro-

cessing of statistical queries. IEEE Transactions on Knowledge and Data Engineering,

1(4), 1989.

[YL95] W. P. Yan and P. Larson. Eager aggregation and lazy aggregation. In Proceedings of

the Eighth International Conference on Very Large Databases (VLDB), pages 345{357,

Zurich, Switzerland, September 1995.

36

