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Abstract

We present parallel algorithms for building decision-tree
classifiers on shared-memory multiprocessor (SMP) sys-
tems. The proposed algorithms span the gamut of data and
task parallelism. The data parallelism is based on attribute
scheduling among processors. This basic scheme is ex-
tended with task pipelining and dynamic load balancing to
yield faster implementations. The task parallel approach
uses dynamic subtree partitioning among processors. Our
performance evaluation shows that the construction of a
decision-tree classifier can be effectively parallelized on an
SMP machine with good speedup.

1 Introduction
Classification is one of the primary data mining task [2].

The input to a classification system consists of example tu-
ples, called a training set, with each tuple having several
attributes. Attributes can be continuous, coming from an
ordered domain, or categorical, coming from an unordered
domain. A special class attribute indicates the label or cat-
egory to which an example belongs. The goal of classifica-
tion is to induce a model from the training set, that can be
used to predict the class of a new tuple. Classification has
applications in diverse fields such as retail target marketing,
fraud detection, and medical diagnosis [10]. Amongst many
classification methods proposed over the years [13, 10], de-
cision trees are particularly suited for data mining, since they
can be built relatively fast compared to other methods and
they are easy to interpret [11]. Trees can also be converted
into SQL statements that can be used to access databases ef-
ficiently [1]. Finally, decision-tree classifiers obtain similar,
and often better, accuracy compared to other methods [10].

Prior to interest in classification for database-centric data
mining, it was tacitly assumed that the training sets could fit
in memory. Recent work has targeted the massive training
sets usual in data mining. Developing classification mod-
els using larger training sets can enable the development of
higher accuracy models. Various studies have confirmed
this [5, 6]. Recent classifiers that can handle disk-resident
data include SLIQ [9], SPRINT [12], and CLOUDS [3].

As data continue to grow in size and complexity, high-
performance scalable data mining tools must necessarily
rely on parallel computing techniques. Past research on par-
allel classification has been focussed on distributed-memory
(also called shared-nothing) machines. Examples include

parallel ID3 [7], which assumed that the entire dataset could
fit in memory; Darwin toolkit with parallel CART [4] from
Thinking Machine, whose details are not available in pub-
lished literature; parallel SPRINT on IBM SP2 [12]; and
ScalParC [8] on a Cray T3D.

While distributed-memory machines provide massive
parallelism, shared-memory machines (also called shared-
everything systems), are also capable of delivering high per-
formance for low to medium degree of parallelism at an eco-
nomically attractive price. Increasingly SMP machines are
being networked together via high-speed links to form hi-
erarchical clusters. Examples include the SGI Origin 2000
and IBM SP2 system which can have a 8-way SMP as one
high node. A shared-memory system offers a single mem-
ory address space that all processors can access. Processors
communicate through shared variables in memory. Syn-
chronization is used to co-ordinate processes. Any proces-
sor can also access any disk attached to the system. The
SMP architecture offers new challenges and trade-offs that
are worth investigating in their own right.

This paper presents parallel algorithms for building
decision-tree classifiers on shared-memory systems, the first
such study to the best of our knowledge. The algorithms
we propose span the gamut of data and task parallelism.
The data parallelism is based on attribute scheduling among
processors—scheduling work associated with different at-
tributes to different processors. This basic scheme is ex-
tended with task pipelining and dynamic load balancing to
yield more efficient schemes. The task parallel approach
uses dynamic subtree partitioning among processors. These
algorithms are evaluated on two SMP configurations: one in
which data is too large to fit in memory and must be paged
from a local disk as needed and the other in which memory
is sufficiently large to hold the whole input data and all tem-
porary files. For the local disk configuration, the speedup
ranged from 2.97 to 3.86 for the build phase and from 2.20
to 3.67 for the total time on a 4-processor SMP. For the large
memory configuration, the range of speedup was from 5.36
to 6.67 for the build phase and from 3.07 to 5.98 for the total
time on an 8-processor SMP.

The rest of the paper is organized as follows. In Sec-
tion 2 we review how a decision-tree classifier, specifically
SPRINT, is built on a uniprocessor machine. Section 3 de-
scribes our new SMP algorithms based on various data and
task parallelization schemes. We give experimental results
in Section 4 and conclude with a summary in Section 5. A
more detailed version of this paper appears in [14].



2 Serial Classification

Each node in a decision tree classifier is either a leaf, in-
dicating a class, or a decision node, specifying some test on
one or more attributes, with one branch or subtree for each
of the possible outcomes of the split test. Decision trees suc-
cessively divide the set of training examples until all the sub-
sets consist of data belonging entirely, or predominantly, to a
single class. Figure 1 shows a decision-tree developed from
the training set on its left.
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Figure 1. Car insurance example.
A decision-tree classifier is usually built in two phases

[4, 11]: a growth phase and a prune phase. The tree is grown
using a divide-and-conquer approach. If all examples in the
training set S belong to a single class, then S becomes a
leaf. On the other hand, if S contains a mixture of examples
from different classes, then S is partitioned into two subsets
which serve as input for the recursive step.

The tree thus built can “overfit” the data. The prune phase
generalizes the tree, and increases the classification accu-
racy on new examples, by removing statistical noise or vari-
ations. This phase requires access only to the fully grown
tree, while the tree growth phase usually requires multiple
passes over the training data. Previous studies from SLIQ
suggest that usually less than 1% of the total time needed to
build a classifier was spent in the prune phase [9]. We there-
fore concentrate on the tree building phase, which depends
on two factors: 1) how to find split points that define node
tests, and 2) having chosen a split point, how to partition the
data. We now describe how the above two steps are handled
in serial SPRINT [12]. It builds the tree in a breadth-first or-
der and uses a one-time pre-sorting technique to reduce the
cost of finding split point for a continuous attribute.

2.1 Attribute Lists

SPRINT initially creates a disk-based attribute list for
each attribute in the data. Each entry in the list consists of an
attribute value, a class label, and a tuple identifier (tid) of the
corresponding data tuple. We will refer to the elements of
the attribute lists as “records” to avoid confusing them with
“tuples” in the training data. Initial lists for continuous at-
tributes are sorted by attribute value. The lists for categor-
ical attributes stay in unsorted order. All the attribute lists
are initially associated with the root of the classification tree.
As the tree is grown and split into subtrees, the attribute lists
are also split. By preserving the order of records in the parti-
tioned lists, no re-sorting is required. Figure 2 shows an ex-
ample of the initial sorted attribute lists associated with the
root of the tree, and the partitioned lists for its two children.
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Figure 2. Splitting a node’s attribute lists.

SPRINT also uses histograms tabulating the class distri-
butions of the records in an attribute list to evaluate split
points for the list. Since the attribute lists are processed one
after the other, only one set of histograms are kept in mem-
ory at any given time.

2.2 Finding Good Split Points

The form of the split test used to partition the data de-
pends on the type of the attribute. Splits for a continuous
attributeA are of the form value(A) < xwhere x is a value
in the domain of A. Splits for a categorical attribute A are
of the form value(A) 2 X where X � domain(A).

The split test is chosen to “best” divide the training
records associated with a node. The “goodness” of the
split depends on how well it separates the classes. Several
splitting indices have been proposed in the past to evaluate
the goodness of the split. SPRINT uses the gini index for
this purpose. For a data set S containing examples from n
classes, gini(S) is defined to be gini(S) = 1�

P
p2j where

pj is the relative frequency of class j in S [4]. For continu-
ous attributes, the candidate split points are mid-points be-
tween every two consecutive attribute values in the training
data. For categorical attributes, all possible subsets of the
attribute values are considered as potential split points. (If
the cardinality is too large a greedy subsetting algorithm is
used.) Note that the histograms contain the necessary infor-
mation to evaluate a gini index.

2.3 Splitting the Data

Having found the winning split test for a node, the node
is split into two children and the node’s attribute lists are di-
vided into two (Figure 2). The attribute list for the winning
attribute (Age in our example at the root node) is partitioned
simply by scanning the list and applying the split test to each
record. For the remaining “losing” attributes (CarType in
our example) more work is needed. While dividing the win-
ning attribute a probe structure (bit mask or hash table) on
the tids is created, noting the child where a particular record
belongs. While splitting other attribute lists, this structure is
consulted for each record to determine the child where this
record should be placed. If the probe structure is too big to
fit in memory, the splitting takes multiple steps. In each step
only a portion of the attribute lists are partitioned.
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Avoiding multiple attribute lists: The attribute lists of
each attribute are stored in disk files. As the tree is split, we
would need to create new files for the children, and delete the
parent’s files. Rather than creating a separate attribute list
for each attribute for every node, only four physical files per
attribute are needed. Since the splits are binary, there is one
attribute file for all leaves that are “left” children and one file
for all leaves that are “right” children. There are two more
files per attribute that serve as alternates. In fact, it is pos-
sible to combine the records of different attribute lists into
one physical file, thus requiring a total of 4 physical files.

3 Parallel Classification on SMP Systems

We now look at the problem of building classification
trees in parallel on SMP systems. We will only discuss the
tree growth phase due to its compute- and data-intensive na-
ture. Tree pruning is relatively inexpensive [9], as it requires
access to only the decision-tree grown in the training phase.

3.1 SMP Schemes

While building a decision-tree, there are three main steps
that must be performed for each node at each level of the
tree: (i) evaluate split points for each attribute (denoted
as step E); (ii) find the winning split-point and construct
a probe structure using the attribute list of the winning at-
tribute (denoted as step W); and (iii) split all the attribute
lists into two parts, one for each child, using the probe struc-
ture (denoted as step S). The parallel schemes will be de-
scribed in terms of these steps.

Our prototype implementation of these schemes uses the
POSIX threads (pthread), which are light weight processes.
To keep the exposition simple, we will not differentiate be-
tween threads and processes and pretend as if there is only
one process per processor. We propose two approaches to
building a tree classifier in parallel: a data parallel approach
and a task parallel approach.
Data parallelism: In data parallelism the P processors
work on distinct portions of the datasets and synchronously
construct the global decision tree. This approach exploits
the intra-node parallelism, i.e., that available within a deci-
sion tree node. We use attribute data parallelism, where the
attributes are divided equally among the different processors
so that each processor is responsible for 1=P attributes. The
parallel implementation of SPRINT on an IBM SP2 [12] is
based on record data parallelism, where each processor is
responsible for processing roughly 1=P fraction of each at-
tribute list. Record parallelism is not well suited to SMP
systems since it is likely to cause excessive synchronization,
and replication of data structures.
Task parallelism: The task parallelism exploits the inter-
node parallelism; different portions of the decision tree are
built in parallel among the processors.

3.2 Attribute Data Parallelism

We will describe the Moving-Window-K algo-
rithm (MWK) based on attribute data parallelism. However,

for pedagogical reasons, we will introduce two intermediate
schemes called BASIC and Fixed-Window-K (FWK) and
then evolve them to the more sophisticated MWK algorithm.
MWK and the two intermediate schemes utilize dynamic at-
tribute scheduling. In a static attribute scheduling, each pro-
cess gets d=P attributes where d denotes the number of at-
tributes. However, this static partitioning is not particularly
suited for classification. Different attributes may have dif-
ferent processing costs because of two reasons. First, there
are two kinds of attributes – continuous and categorical, and
they use different techniques to arrive at split tests. Sec-
ond, even for attributes of the same type, the computation
depends on the distribution of the record values. For exam-
ple, the cardinality of the value set of a categorical attribute
determines the cost of gini index evaluation. These factors
warrant a dynamic attribute partitioning approach.

3.2.1 The Basic Scheme (BASIC)

Figure 3 shows the pseudo-code for the BASIC scheme. A
barrier represents a point of synchronization. While a full
tree is shown here, the tree generally may have a sparse ir-
regular structure. At each level a processor evaluates the as-
signed attributes, which is followed by a barrier.

attributes in parallel (dynamic scheduling)

(master) thenif

forall

forall

in parallel (dynamic scheduling)
each leaf
attributes

each leaffor

for each leaf

for

// Starting with the root node execute the
// following code for each new tree level

barrier

split attributes (S)

evaluate attributes (E)

barrier

get winning attribute; form hash-probe (W)

Figure 3. The BASIC algorithm.
Attribute scheduling: Attributes are scheduled dynami-
cally by using an attribute counter and locking. A processor
acquires the lock, grabs an attribute, increments the counter,
and releases the lock.
Finding split points (E): Since each attribute has its own set
of four reusable attribute files, as long as no two processors
work on the same attribute at the same time, there is no need
for file access synchronization. To minimize barrier syn-
chronization the tree is built in a breadth-first manner. The
advantage is that once a processor has been assigned an at-
tribute, it can evaluate the split points for that attribute for all
the leaves in the current level. This way, each attribute list
is accessed only once sequentially during the evaluation for
a level. Once all attributes have been processed in this fash-
ion, a single barrier ensures that all processors have reached
the end of the attribute evaluation phase. As each processor
works independently on the entire attribute list, they can in-
dependently carry out gini index evaluation to determine the
best split point for each attribute assigned to it.
Hash probe construction (W): Once all the attributes of
a leaf have been processed, each processor will have what
it considers to be the best split for that leaf. We now need
to find the best split point from among each processor’s lo-
cally best split. We can then proceed to scan the winning
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attribute’s records and form the hash probe.
We could keep separate hash tables for each leaf. If there

is insufficient memory to hold these hash tables in mem-
ory, they would have to be written to disk. The size of each
leaf’s hash table can be reduced by keeping only the smaller
child’s tids, since the other records must necessarily belong
to the other child. Another option is to maintain a global bit
probe for all the current leaves. It has as many bits as there
are tuples in the training set. As the records for each leaf’s
winning attribute are processed, the corresponding bit is set
to reflect whether the record should be written to a left or
right file. A third approach is to maintain an index of valid
tids of a leaf, and relabel them starting from zero. Then each
leaf can keep a separate bit probe.

BASIC uses the second approach for simplicity. Both the
tasks of finding the minimum split value and bit probe con-
struction are performed serially by a pre-designated master
processor. This step thus represents a potential bottleneck in
this BASIC scheme, which we will eliminate later in MWK.
During the time the master computes the hash probe, the
other processors enter a barrier and go to sleep. Once the
master finishes, it also enters the barrier and wakes up the
sleeping processors, setting the stage for the splitting phase.
Attribute list splitting (S): The attribute list splitting phase
proceeds in the same manner as the evaluation. A processor
dynamically grabs an attribute, scans its records, hashes on
the tid for the child node, and performs the split. Since the
files for each attribute are distinct there is no read/write con-
flict among the different processors.

3.2.2 The Fixed-Window-K Scheme (FWK)

attributes in parallel (dynamic scheduling)

forall attributes in parallel

forall

each leaffor

barrier

split attributes (S)

(dynamic scheduling)

// Starting with the root node execute the
// following code for each new tree level

each block of K leavesfor

evaluate attributes (E)
each leaf ifor

barrierbarrier

get winning attribute; form hash-probe (W)

(last leaf of block)if

(last processor finishing on leaf i)if then

then

Figure 4. The FWK algorithm.
We noted above that the winning attribute hash probe con-
struction phaseW in BASIC is a potential sequential bottle-
neck. The Fixed-Window-K (FWK) scheme shown in Fig-
ure 4 addresses this problem. The basic idea is to overlap
theW-phase with the E-phase of the next leaf at the current
level, thus realizing pipelining. The degree of overlap can be
controlled by a parameterK denoting the window of current
overlapped leaves. Let Ei,Wi, andSi denote the evaluation,
winning hash construction, and partition steps for leaf i at a
given level. Then forK = 2, we get the overlap ofW0 with
E1. For K = 3, we get an overlap of W0 with fE1; E2g, and
an overlap ofW1 with E2. For a generalK, we get an over-
lap of Wi with fEi+1; � � � ; EK�1g, for all 0 � i � K � 1.

The attribute scheduling, split finding, and partitioning
remain the same. The difference is that, depending on the

L1

L0

R1

R0 R0L0 L0

R1 L1 L1 L1R1 R1 R1SIMPLE SCHEME:

NEXT LEVEL

CURRENT LEVEL

RELABEL SCHEME: L1 R1 L1 R1 L1-- -- --

L1

Figure 5. Scheduling attribute files.

window size K, we group K leaves together. For each leaf
within the K-block (i.e., K leaves of the same group), we
first evaluate all attributes. At the last leaf in each block we
perform a barrier synchronization to ensure that all evalua-
tions for the current block have completed. The hash probe
for a leaf is constructed by the last processor to exit the eval-
uation for that leaf. This ensures that no two processors ac-
cess the hash probe at the same time.

Managing attribute files: There were a set of four reusable
files per attribute in the BASIC scheme. However, if we
are to allow overlapping of the hash probe construction
step with the evaluation step, which uses dynamic attribute
scheduling within each leaf, we would require K distinct
files for the current level, and K files for the parent’s at-
tribute lists, that is 2K files per attribute. This way all K
leaves in a group have separate files for each attribute and
there is no read/write conflict. Another complication arises
from the fact that some children may turn out to be pure (i.e.,
all records belong to the same class) at the next level. Since
these children will not be processed after the next stage, we
have to be careful in the file assignment for these children.
A simple file assignment, without considering the child pu-
rity, where children are assigned files from 0; � � � ;K�1, will
not work well, as it may introduce “holes” in the schedule.
However, if we knew which children will be pure in the next
level, we can do better.

The class histograms gathered while splitting the chil-
dren are adequate to determine purity. We add a pre-test
for child purity at this stage. If the child will become pure
at the next level, it is removed from the list of valid chil-
dren, and the files are assigned consecutively among the re-
maining children. This insures that there are no holes in
the K-block, and we get perfect scheduling. The two ap-
proaches are contrasted in Figure 5. The bold circles show
the valid children for the current and next level. With the
simple labeling scheme the file labels for the valid children
are L1; L1; R1; R1; R1. With a window of size K = 2,
there is only one instance where work can overlap, i.e., when
going from L1 to R1. However, if we relabel the valid
children’s files then we obtain the perfectly schedulable se-
quence L1; R1; L1; R1; L1.

The work overlap is achieved at the cost of increased bar-
rier synchronization; one for each K-block. A large win-
dow size not only increases the overlap but also minimizes
the number of synchronizations, but a larger window implies
more temporary files, which incur greater file creation over-
head and tend to have less locality. The ideal window size
is a trade-off between the above conflicting goals.
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3.2.3 The Moving-Window-K Algorithm (MWK)

We now describe the Moving-Window-K (MWK) algo-
rithm, shown in Figure 6. It eliminates the serial bottleneck
of BASIC and exploits greater parallelism than FWK. Con-
sider a leaf frontier: fL01; R01; L02; R02g. With a window
size of K = 2, not only is there parallelism available for
fixed blocks fL01; R01g and fL02; R02g (used in FWK),
but also between these two blocks, fR01; L02g. The MWK
algorithm uses this extra parallelism.

attributes in parallel (dynamic scheduling)

forall attributes in parallel

forall

each leaffor

barrier

split attributes (S)

(dynamic scheduling)

// Starting with the root node execute the
// following code for each new tree level

each block of K leavesfor
each leaf ifor
if (last block’s i-th leaf not done) then

wait
evaluate attributes (E)
if (last processor finishing on leaf i)

get winning attribute; form hash-probe (W)
signal that i-th leaf is done

then

Figure 6. The MWK algorithm.
This scheme is implemented by replacing the barrier per

block ofK leaves with a wait on a conditional variable. Be-
fore evaluating leaf i, a check is made whether the i-th leaf
of the previous block has been processed. If not, the proces-
sor goes to sleep on the conditional variable. Otherwise, it
proceeds with the current leaf. The last processor to finish
the evaluation of leaf i from the previous block constructs
the hash probe, and then signals the conditional variable, so
that any sleeping processors are woken up.

It should be observed that the gain in available paral-
lelism comes at the cost of increased lock synchronization
per leaf (however, there is no barrier anymore). As in the
FWK approach, the files are relabeled by eliminating the
pure children. A largerK value would increase parallelism,
and while the number of synchronizations remain about the
same, it will reduce the average waiting time on the condi-
tional variable. Like FWK, this scheme requires 2K files
per attribute, so that each of the K leaves has separate files
for each attribute and there is no read/write conflict.

3.3 Task Parallel Subtree Algorithm (SUBTREE)

The data parallel approaches target the parallelism avail-
able among the different attributes. On the other hand the
task parallel approach is based on the parallelism that exists
in different subtrees. Once the attribute lists are partitioned,
each child can be processed in parallel. One implementa-
tion of this idea would be to initially assign all the processors
to the tree root, and recursively partition the processor sets
along with the attribute lists. Once a processor gains control
of a subtree, it will work only on that portion of the tree. This
approach would work fine if we have a full tree. In general,
the decision trees are imbalanced and this static partitioning
scheme can suffer from large load imbalances. We therefore
use a dynamic subtree task parallelism scheme.

The pseudo-code for the dynamic SUBTREE algorithm
is shown in Figure 7. To implement dynamic processor as-

signment to different subtrees, we maintain a queue of cur-
rently idle processors, called the FREE queue. Initially this
queue is empty, and all processors are assigned to the root
of the decision tree, and belong to a single group. One pro-
cessor within the group is made the group master (we chose
the processor with the smallest identifier as the master). The
master is responsible for partitioning the processor set.

 Leaf Frontier L = {l1, l2, ..., ly})
SubTree

apply SIMPLE algorithm on L with P processors
NewL = {l1, l2, ..., lm}   //new leaf frontier

if (NewL is empty) then

(Processor Group P = {p1, p2, ..., px},

(group master)elseif

if (only one leaf remaining) then
(NewP, l1)SubTree

then

(only one processor in group)elseif

//multiple leaves and processorselse
(p1, NewL)SubTree

SubTree (P1, L1)

split NewL into L1 and L2
split NewP into P1 and P2

SubTree (P2, L2)

get FREE processors; NewP = {p1, p2, ..., pn}

wakeup processors in NewP

//not the group masterelse

then

put self in FREE queue

go to sleep

Figure 7. The SUBTREE algorithm.
At any given point in the algorithm, there may be mul-

tiple processor groups working on distinct subtrees. Each
group independently executes the following steps once the
BASIC algorithm has been applied to the current subtree
level. First, the new subtree leaf frontier is constructed. If
there are no children remaining, then each processor inserts
itself in the FREE queue, ensuring mutually exclusive ac-
cess via locking. If there is more work to be done, then all
processors except the master go to sleep on a conditional
variable. The group master checks if there are any new ar-
rivals in the FREE queue and grabs all free processors in the
queue. This forms the new processor set.

There are three possibilities at this juncture. If there is
only one leaf remaining, then all processors are assigned to
that leaf. If there is only processor in the previous group
and there is no processor in the FREE queue, then it forms
a group on its own and works on the current leaf frontier.
Lastly, if there are multiple leaves and multiple processors,
the group master splits the processor set into two parts, and
also splits the leaves into two parts. The two newly formed
processor sets become the new groups, and work on the cor-
responding leaf sets. Finally, the master wakes up the all
relevant processors – from the original group and those ac-
quired from the FREE queue. For P processors, there are at
most P groups. Since the attribute files for all groups must
be distinct, SUBTREE requires up to 4P files per attribute.

3.4 Qualitative Algorithm Comparison

The MWK scheme eliminates the hash-probe construc-
tion bottleneck of BASIC via task pipelining. It fully ex-
ploits the available parallelism via the moving window
mechanism, instead of using the fixed window approach of
FWK. It also eliminates barrier synchronization completely.
However, it introduces a lock synchronization per leaf per
level. If the tree is bushy, then the increased synchroniza-
tion could nullify the other benefits. A feature of MWK and
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FWK is that they exploit parallelism at a finer grain. The at-
tributes in a K-block may be scheduled dynamically on any
processor. This can have the effect of better load balancing
compared to the coarser grained BASIC approach where a
processor works on all the leaves for a given attribute.

While MWK is essentially a data parallel approach, it
utilizes some elements of task parallelism in the pipelining
of the evaluation and hash probe construction stages. The
SUBTREE approach is also a hybrid approach in that it uses
the BASIC scheme within each group. In fact we can also
use FWK or MWK as the subroutine. The pros of this ap-
proach are that it has only one barrier synchronization per
level within each group and it has good processor utiliza-
tion. As soon as a processor becomes idle it is likely to be
grabbed by some active group. Some of the cons are that it is
sensitive to the tree structure and may lead to excessive syn-
chronization for the FREE queue, due to rapidly changing
groups. Another disadvantage is that it requires more mem-
ory, because we need a separate hash probe per group.

4 Performance Evaluation

We use the execution time as the main metric of classi-
fier performance, since [9] has shown that SLIQ/SPRINT
achieve similar or better classification accuracy and pro-
duce smaller trees when compared to other classifiers like
CART [4] and C4 (a predecessor of C4.5 [11]).

4.1 Experimental Setup

Machine Configuration: Experiments were performed on
two SMP machines ( with different configurations) with a
112 MHz PowerPC-604 processor, and a 1 MB L2-Cache.
Machine A has 4 processors, 128 MB memory and 300 MB
disk. The amount of memory is insufficient for training data,
temporary files, and data structures altogether to fit in mem-
ory. Thus data reads/writes will go to disk each time. Ma-
chine B has 8 processors, 1 GB memory and 2 GB disk. All
the temporary files created during the run will be cached in
memory. Machine A is of greater interest to the database
community and we present a detailed set of experiments for
it. However, due to the decreasing cost of RAM, the second
configuration is also increasingly realizable in practice. We
present this case to study the impact of large memories.
Datasets: We use synthetic datasets proposed in [1], using
two classification functions of different complexity. These
functions divide the database into two classes. Function 2 is
a simple function to learn and results in fairly small decision
trees, while Function 7 is the most complex function and
produces large trees (see Table 1). The notation Fx-Ay-DzK
is used to denote the dataset with functionx, y attributes and
z � 1000 example records. The database size shown in Ta-
ble 1 is only the initial size. After SPRINT allocates tem-
porary attribute files the final size is at least twice the ini-
tial size. Thus the datasets would require more than 192 MB
disk space, and would be out-of-core on Machine A, which
has only 128 MB memory.
Setup and Sort Time: Table 1 shows the time for creating
the attribute lists and for sorting the continuous attributes.
For simple datasets such as F2, it can be significant, whereas

it is negligible for complex datasets such as F7. We have
not focussed on parallelizing these phases, concentrating in-
stead on the more challenging build phase. Consequently
for simple datasets such as F2 the setup and sort time can
be significant. However, for the complex datasets such as
F7 this time is small.

4.2 Parallel Performance: Local Disk Access

Our initial experiments (not reported here for lack of
space) confirmed that MWK was indeed better than BASIC
as expected, and that it performs as well or better than FWK.
Thus, we will only present the performance of MWK and
SUBTREE. We also found that a window size of 4 works
well in practice. We consider four main parameters for per-
formance comparison: 1) number of processors, 2) number
of attributes, 3) number of example tuples, and 4) classifica-
tion function (Function 2 or Function 7).

Figures 8 and 9 show the parallel performance and
speedup of the two algorithms as we vary the number of pro-
cessors on Machine A, for the two classification functions
F2 and F7, on the datasets A32-D250K and A64-D125K. The
rightmost charts on each row show the speedup with respect
to total time (including setup and sort time), while the other
charts show only the build time.

Considering the build time only, the speedups for both al-
gorithms on 4 processors range from 2.97 to 3.32 for func-
tion F2 and from 3.25 to 3.86 for function F7. For func-
tion F7, the speedups of total time for both algorithms on
4 processors range from 3.12 to 3.67. The important ob-
servation from these figures is that both algorithms perform
quite well for various datasets. Even the overall speedups
are good for complex datasets generated with function F7.
As expected, the overall speedups for simple datasets gen-
erated by function F2, in which build time is a smaller frac-
tion of total time, are not as good (around 2.2 to 2.5 on 4 pro-
cessors). These speedups can be improved by parallelizing
the setup phase more aggressively. MWK’s performance is
mostly comparable to or better than SUBTREE. The differ-
ence ranges from 8% worse to 22% better than SUBTREE.
Overall, MWK is usually 10% better than SUBTREE.

The overall advantage of MWK over SUBTREE is more
visible for the simple function F2. The reason is that F2 gen-
erates very small trees with 4 levels and a maximum of 2
leaves at any level. Around 40% of the total time is spent in
the root node, where SUBTREE has only one process group.
Thus on this dataset SUBTREE is unable to fully exploit the
inter-node parallelism successfully. MWK is the winner be-
cause it not only overlaps the E andW phases, but also man-
ages to reduce the load imbalance.

The figures also show that on F2, increasing the number
of attributes worsens the performance of SUBTREE. This is
because a free processor can join a new group only at the end
of a level. As each processor or group becomes free it waits
in the FREE queue to rejoin the computation. However, it
will not be assimilated into the new group until one of the ex-
isting group finishes working on all the attributes. The larger
the number of attributes the larger the wait, adversely im-
pacting the performance of SUBTREE. On the other hand,
MWK has the opposite trend; more attributes lead to a better
attribute scheduling, which tends to minimize imbalance.
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Figure 8. Local disk access: functions 2 and 7; 32 attributes; 250K records.
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Figure 9. Local disk access: functions 2 and 7; 64 attributes; 125K records.
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Figure 10. Main-memory access: functions 2 and 7; 32 attributes; 250K records.
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Figure 11. Main-memory access: functions 2 and 7; 64 attributes; 125K records.

7



Dataset DB Size Tree Size Setup Time Sort Time Total Time Setup % Sort %
(MB) No. Levels Max Leaves/Level (seconds) (seconds) (seconds)

F2-A32-D250K 96 4 2 685 598 3584 19.1% 16.6%
F2-A64-D125K 96 4 2 705 626 3665 19.2% 17.1%
F7-A32-D250K 96 59 802 838 780 24706 3.4% 3.2%
F7-A64-D125K 96 55 384 672 636 22664 3.0% 2.8%

Table 1. Dataset characteristics, and sequential setup and sorting times.
Another trend is that a large number of processors tends

to favor SUBTREE. This can be seen from figures for both
F2 and F7 by comparing the build times for the two al-
gorithms first with 2 processors, then with 4 processors.
This is because after about logP levels of the tree growth
(P being the number of processors), the only synchroniza-
tion overhead for SUBTREE, before any processor becomes
free, is that each processor checks the FREE queue once per
level. On the other hand, for MWK, there will be relatively
more processor synchronization overhead, as the number
of processors increases, which includes acquiring attributes,
checking on conditional variables, and waiting on barriers.

4.3 Parallel Performance: Main-Memory Access
Machine B has 1 GB of main-memory available. Thus,

after the very first access the data will be cached in main-
memory, leading to fast access times. Figures 10 and 11
show sets of timing and speedup charts. For build time only,
the speedups for both algorithms on 8 processors range from
5.46 to 6.37 for function F2 and from 5.36 to 6.67 for func-
tion F7. The speedups of total time on F7 for both algo-
rithms on 8 processors range from 4.63 to 5.77 Again, the
important observation is that both algorithms perform very
well for various datasets even up to 8 processors.

5 Conclusion
We presented parallel algorithms for building decision-

tree classifiers on SMP systems. The proposed algorithms
span the gamut of data and task parallelism. The MWK
algorithm uses data parallelism from multiple attributes,
but also uses task pipelining to overlap different comput-
ing phase within a tree node, thus avoiding potential sequen-
tial bottleneck for the hash-probe construction for the split
phase. The MWK algorithm employs conditional variable,
not barrier, among leaf nodes to avoid unnecessary proces-
sor blocking time at a barrier. It also exploits dynamic as-
signment of attribute files to a fixed set of physical files,
which maximizes the number of concurrent accesses to disk
without file interference. The SUBTREE algorithm uses
recursive divide-and-conquer to minimize processor inter-
action, and assigns “free processors” dynamically to “busy
groups” to achieve load balancing.

Experiments show that both algorithms achieve good
speedups in building the classifier on a 4-processor SMP
with disk configuration and on an 8-processor SMP with
memory configuration, for various numbers of attributes,
various numbers of example tuples of input databases, and
various complexities of data models. The performance of
both algorithms are comparable, but MWK overall has a
slight edge. These experiments demonstrate that the impor-
tant data mining task of classification can be effectively par-
allelized on SMP machines.
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