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Abstract

Wk present parallel algorithmsfor building decision-tree
classifiers on shared-memory multiprocessor (SMP) sys-
tems. The proposed algorithms span the gamut of data and
task parallelism. The data parallelismis based on attribute
scheduling among processors. This basic scheme is ex-
tended with task pipelining and dynamic load balancing to
yield faster implementations. The task parallel approach
uses dynamic subtree partitioning among processors. Our
performance evaluation shows that the construction of a
decision-tree classifier can be effectively parallelized on an
SMP machine with good speedup.

1 Introduction

Classification is one of the primary data mining task [2].
Theinput to a classification system consists of example tu-
ples, caled a training set, with each tuple having several
attributes. Attributes can be continuous, coming from an
ordered domain, or categorical, coming from an unordered
domain. A special class attribute indicates the label or cat-
egory to which an example belongs. The goal of classifica-
tion is to induce a model from the training set, that can be
used to predict the class of a new tuple. Classification has
applicationsin diversefields such asretail target marketing,
fraud detection, and medical diagnosis[10]. Amongst many
classification methods proposed over the years[13, 10], de-
cisiontreesareparticularly suited for datamining, sincethey
can be built relatively fast compared to other methods and
they are easy to interpret [11]. Trees can also be converted
into SQL statementsthat can be used to access databases ef -
ficiently [1]. Finally, decision-tree classifiers obtain similar,
and often better, accuracy compared to other methods [10].

Prior to interest in classification for database-centric data
mining, it was tacitly assumed that the training sets could fit
in memory. Recent work has targeted the massive training
sets usual in data mining. Developing classification mod-
elsusing larger training sets can enabl e the devel opment of
higher accuracy models. Various studies have confirmed
this [5, 6]. Recent classifiers that can handle disk-resident
datainclude SLIQ [9], SPRINT [12], and CLOUDS[3].

As data continue to grow in size and complexity, high-
performance scalable data mining tools must necessarily
rely on parallel computing techniques. Past research on par-
allel classification hasbeen focussed on distributed-memory
(also called shared-nothing) machines. Examples include
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paralel ID3[7], which assumed that the entire dataset could
fit in memory; Darwin toolkit with parallel CART [4] from
Thinking Machine, whose details are not available in pub-
lished literature; parallel SPRINT on IBM SP2 [12]; and
ScalParC [8] onaCray T3D.

While distributed-memory machines provide massive
parallelism, shared-memory machines (also called shared-
everything systems), are al so capabl e of delivering high per-
formancefor low to medium degree of parallelism at an eco-
nomically attractive price. Increasingly SMP machines are
being networked together via high-speed links to form hi-
erarchical clusters. Examplesinclude the SGI Origin 2000
and IBM SP2 system which can have a 8-way SMP as one
high node. A shared-memory system offers a single mem-
ory address space that all processors can access. Processors
communicate through shared variables in memory. Syn-
chronization is used to co-ordinate processes. Any proces-
sor can also access any disk attached to the system. The
SMP architecture offers new challenges and trade-offs that
are worth investigating in their own right.

This paper presents parald algorithms for building
decision-treeclassifiers on shared-memory systems, thefirst
such study to the best of our knowledge. The agorithms
we propose span the gamut of data and task parallelism.
The data parallelism is based on attribute scheduling among
processors—scheduling work associated with different at-
tributes to different processors. This basic scheme is ex-
tended with task pipelining and dynamic load balancing to
yield more efficient schemes. The task parallel approach
uses dynamic subtree partitioning among processors. These
algorithmsare evaluated on two SMP configurations: onein
which dataistoo large to fit in memory and must be paged
from alocal disk as needed and the other in which memory
issufficiently largeto hold the whole input dataand all tem-
porary files. For the local disk configuration, the speedup
ranged from 2.97 to 3.86 for the build phase and from 2.20
to 3.67 for thetotal time on a4-processor SMP. For thelarge
memory configuration, the range of speedup was from 5.36
t0 6.67 for the build phase and from 3.07 to 5.98 for the total
time on an 8-processor SMP.

The rest of the paper is organized as follows. In Sec-
tion 2 we review how a decision-tree classifier, specifically
SPRINT, is built on a uniprocessor machine. Section 3 de-
scribes our new SMP algorithms based on various data and
task parall€elization schemes. We give experimental results
in Section 4 and conclude with a summary in Section 5. A
more detailed version of this paper appearsin [14].



2 Serial Classification

Each node in adecision tree classifier is either aleaf, in-
dicating aclass, or a decision node, specifying sometest on
one or more attributes, with one branch or subtree for each
of the possible outcomes of the split test. Decision treessuc-
cessively dividethe set of training examplesuntil all thesub-
setsconsist of databelonging entirely, or predominantly, toa
singleclass. Figure 1 shows a decision-tree developed from
the training set on its |l eft.

Decision Tree
Age<275

Training Set
Tid | Age|Car Type| Class

0 | 23 | family High

1 17 sports High CarTypein {sports}
2 43 sports High

3 | 68 | family | Low High

4 32 truck Low

5 High Low

20 family High
Figure 1. Car insurance example.

A decision-tree classifier is usually built in two phases
[4, 11]: agrowth phaseand aprunephase. Thetreeisgrown
using a divide-and-conquer approach. If all examplesin the
training set S belong to a single class, then S becomes a
leaf. Ontheother hand, if S containsamixture of examples
from different classes, then S is partitioned into two subsets
which serve as input for the recursive step.

Thetreethusbuilt can“ overfit” thedata. The prunephase
generalizes the tree, and increases the classification accu-
racy on new examples, by removing statistical noise or vari-
ations. This phase requires access only to the fully grown
tree, while the tree growth phase usualy requires multiple
passes over the training data. Previous studies from SLIQ
suggest that usually less than 1% of the total time needed to
build aclassifier was spent in the prune phase[9]. Wethere-
fore concentrate on the tree building phase, which depends
on two factors: 1) how to find split points that define node
tests, and 2) having chosen a split point, how to partition the
data. We now describe how the above two steps are handled
inserial SPRINT [12]. It buildsthetreein abreadth-first or-
der and uses a one-time pre-sorting technique to reduce the
cost of finding split point for a continuous attribute.

2.1 AttributelLists

SPRINT initially creates a disk-based attribute list for
each attributeinthedata. Each entry inthelist consistsof an
attributevalue, aclasslabel, and atupleidentifier (tid) of the
corresponding data tuple. We will refer to the elements of
the attribute lists as “records’ to avoid confusing them with
“tuples’ in the training data. Initial lists for continuous at-
tributes are sorted by attribute value. The lists for categor-
ical attributes stay in unsorted order. All the attribute lists
areinitially associated with theroot of the classification tree.
Asthetreeisgrown and split into subtrees, the attributelists
arealso split. By preserving the order of recordsin the parti-
tioned lists, no re-sorting isrequired. Figure 2 shows an ex-
ample of the initial sorted attribute lists associated with the
root of the tree, and the partitioned lists for its two children.

Attribute lists for node 0

Age | Class | Tid Car Type| Class | Tid
17 | High family | High
20 | High sports | High
23 | High sports | High
32 | Low family | Low
43 | High
68 | Low

truck Low

w|n|s|o ok
a|sjw|n|klo

family | High

Age<27.5

Attribute lists for node 2
Age | Class | Tid
© @ [=liw]s

20 | High 5 43 | High 2
23 | High o 68 | Low 3

Attribute lists for node 1

Age | Class | Tid
17 | High

Car Type| Class | Tid Car Type| Class | Tid
family | High | © sports | High | 2
sports. High 1 family Low 3
family | High | 5 truck Low 4

Figure 2. Splitting a node’s attribute lists.

SPRINT also uses histograms tabulating the class distri-
butions of the records in an attribute list to evaluate split
pointsfor thelist. Sincethe attribute lists are processed one
after the other, only one set of histograms are kept in mem-
ory at any giventime.

2.2 Finding Good Split Points

The form of the split test used to partition the data de-
pends on the type of the attribute. Splits for a continuous
attribute A are of theformvalue(A) < x wherez isavalue
in the domain of A. Splits for a categorical attribute A are
of theformvalue(A) € X where X C domain(A).

The split test is chosen to “best” divide the training
records associated with a node. The “goodness’ of the
split depends on how well it separates the classes. Several
splitting indices have been proposed in the past to evaluate
the goodness of the split. SPRINT uses the gini index for
this purpose. For a data set S containing examples fromn
classes, gini(S) isdefined to be gini(S) = 1 - p3 where
p; istherelative frequency of class j in S [4]. For continu-
ous attributes, the candidate split points are mid-points be-
tween every two consecutive attribute valuesin the training
data. For categorical attributes, all possible subsets of the
attribute values are considered as potential split points. (If
the cardinality is too large a greedy subsetting algorithmis
used.) Note that the histograms contain the necessary infor-
mation to evaluate a gini index.

2.3 Splitting the Data

Having found the winning split test for a node, the node
is split into two children and the node’s attribute lists are di-
vided into two (Figure 2). The attributelist for the winning
attribute (Age in our example at the root node) is partitioned
simply by scanning thelist and applying the split test to each
record. For the remaining “losing” attributes (CarT'ype in
our example) morework isneeded. While dividing thewin-
ning attribute a probe structure (bit mask or hash table) on
thetidsiscreated, noting the child where a particular record
belongs. While splitting other attributelists, thisstructureis
consulted for each record to determine the child where this
record should be placed. If the probe structure istoo big to
fit in memory, the splitting takes multiple steps. 1n each step
only aportion of the attribute lists are partitioned.



Avoiding multiple attribute lists. The attribute lists of
each attribute are stored in disk files. Asthetreeissplit, we
would need to create new filesfor the children, and del etethe
parent’s files. Rather than creating a separate attribute list
for each attributefor every node, only four physical files per
attribute are needed. Sincethe splitsare binary, thereisone
attributefilefor all leavesthat are“left” childrenand onefile
for all leavesthat are “right” children. There are two more
files per attribute that serve as alternates. In fact, it is pos-
sible to combine the records of different attribute lists into
one physical file, thus requiring atotal of 4 physical files.

3 Paralle Classification on SMP Systems

We now look at the problem of building classification
treesin parallel on SMP systems. We will only discuss the
tree growth phase dueto its compute- and data-intensive na-
ture. Treepruningisrelatively inexpensive[9], asit requires
accessto only the decision-tree grown in the training phase.

3.1 SMP Schemes

While building adecision-tree, there are three main steps
that must be performed for each node at each level of the
tree: (i) evaluate split points for each attribute (denoted
as step £); (ii) find the winning split-point and construct
a probe structure using the attribute list of the winning at-
tribute (denoted as step W); and (iii) split all the attribute
listsinto two parts, onefor each child, using the probe struc-
ture (denoted as step S). The parallel schemes will be de-
scribed in terms of these steps.

Our prototypeimplementation of these schemes usesthe
POSIX threads (pthread), which are light weight processes.
To keep the exposition simple, we will not differentiate be-
tween threads and processes and pretend as if there is only
one process per processor. We propose two approaches to
building atree classifier in parallel: adata parallel approach
and atask parallel approach.

Data parallelism: In data parallelism the P processors
work on distinct portions of the datasets and synchronously
construct the global decision tree. This approach exploits
the intra-node parallelism, i.e., that available within a deci-
sion tree node. We use attribute data parallelism, wherethe
attributesaredivided equally among the different processors
so that each processor isresponsiblefor 1/ P attributes. The
parallel implementation of SPRINT onan IBM SP2[12] is
based on record data parallelism, where each processor is
responsible for processing roughly 1/ P fraction of each at-
tribute list. Record parallelism is not well suited to SMP
systemssinceit islikely to cause excessive synchronization,
and replication of data structures.

Task paralldism: The task parallelism exploits the inter-
node parallelism; different portions of the decision tree are
built in parallel among the processors.

3.2 Attribute Data Parallelism

We will describe the Moving-Window-K algo-
rithm (MWK) based on attribute data parallelism. However,

for pedagogical reasons, wewill introduce two intermediate
schemes called BASIC and Fixed-Window-K (FWK) and
then evolvethemto the more sophisticated MWK algorithm.
MWK and the two intermediate schemes utilize dynamic at-
tribute scheduling. In astatic attribute scheduling, each pro-
cess gets d/ P attributes where d denotes the number of at-
tributes. However, this static partitioning is not particularly
suited for classification. Different attributes may have dif-
ferent processing costs because of two reasons. First, there
aretwo kinds of attributes— continuousand categorical, and
they use different techniques to arrive at split tests. Sec-
ond, even for attributes of the same type, the computation
depends on the distribution of the record values. For exam-
ple, the cardinality of the value set of a categorical attribute
determines the cost of gini index evaluation. These factors
warrant a dynamic attribute partitioning approach.

3.2.1 TheBasic Scheme (BASIC)

Figure 3 shows the pseudo-code for the BASIC scheme. A
barrier represents a point of synchronization. While a full
tree is shown here, the tree generally may have a sparse ir-
regular structure. At each level aprocessor evaluatesthe as-
signed attributes, which is followed by a barrier.

// Starting with the root node execute the
// following code for each new tree level

forall attributes in parallel (dynamic scheduling)
for each leaf
evaluate attributes (E)

barrier
if (master) then
for each leaf
get winning attribute; form hash-probe (W)

barrier
forall attributes in parallel (dynamic scheduling)
for each leaf
split attributes (S)

Figure 3. The BASIC algorithm.

Attribute scheduling: Attributes are scheduled dynami-
cally by using an attribute counter and locking. A processor
acquiresthelock, grabsan attribute, incrementsthe counter,
and rel eases the lock.

Finding split points(€): Sinceeach attribute hasitsown set
of four reusable attribute files, as long as no two processors
work on the same attribute at the sametime, thereis no need
for file access synchronization. To minimize barrier syn-
chronization the tree is built in a breadth-first manner. The
advantage is that once a processor has been assigned an at-
tribute, it can evaluate the split pointsfor that attributefor all
the leavesin the current level. Thisway, each attribute list
is accessed only once sequentially during the evaluation for
alevel. Onceall attributes have been processed in thisfash-
ion, asingle barrier ensuresthat all processors have reached
the end of the attribute evaluation phase. As each processor
worksindependently on the entire attribute list, they can in-
dependently carry out gini index evaluation to determinethe
best split point for each attribute assigned to it.

Hash probe construction (W): Once al the attributes of
aleaf have been processed, each processor will have what
it considers to be the best split for that leaf. We now need
to find the best split point from among each processor’s | o-
cally best split. We can then proceed to scan the winning




attribute’s records and form the hash probe.

We could keep separate hash tablesfor each leaf. If there
is insufficient memory to hold these hash tables in mem-
ory, they would have to be written to disk. The size of each
leaf’shash table can be reduced by keeping only the smaller
child’stids, since the other records must necessarily belong
to the other child. Another optionisto maintain aglobal bit
probefor all the current leaves. It has as many hits asthere
aretuplesin the training set. Asthe recordsfor each leaf’s
winning attribute are processed, the corresponding bit is set
to reflect whether the record should be written to a left or
right file. A third approach isto maintain an index of valid
tidsof aleaf, and relabel them starting from zero. Then each
leaf can keep a separate bit probe.

BASIC usesthe second approach for simplicity. Both the
tasks of finding the minimum split value and bit probe con-
struction are performed serially by a pre-designated master
processor. Thisstep thusrepresentsapotential bottleneck in
thisBASIC scheme, whichwewill eliminate later in MWK.
During the time the master computes the hash probe, the
other processors enter a barrier and go to sleep. Once the
master finishes, it also enters the barrier and wakes up the
sleeping processors, setting the stage for the splitting phase.
Attributelist splitting (S): Theattributelist splitting phase
proceedsin the same manner as the evaluation. A processor
dynamically grabs an attribute, scans its records, hashes on
the tid for the child node, and performs the split. Since the
filesfor each attribute are distinct thereis no read/write con-
flict among the different processors.

3.2.2 TheFixed-Window-K Scheme (FWK)

// Starting with the root node execute the
// following code for each new tree level

forall attributes in parallel (dynamic scheduling)
for each block of K leaves
for each leaf i
evaluate attributes (E)
if (last leaf of block) then
barrier
if (last processor finishing on leaf i) then
get winning attribute; form hash-probe (W)

barrier
forall attributes in parallel (dynamic scheduling)
for each leaf
split attributes (S)

Figure 4. The FWK algorithm.

We noted above that the winning attribute hash probe con-
struction phase VW in BASIC isapotential sequentia bottle-
neck. The Fixed-Window-K (FWK) scheme shown in Fig-
ure 4 addresses this problem. The basic idea is to overlap
the )W-phase with the £-phase of the next leaf at the current
level, thusrealizing pipelining. Thedegreeof overlap canbe
controlled by aparameter K denoting thewindow of current
overlappedleaves. Let £;, W;, and S; denotethe evaluation,
winning hash construction, and partition steps for leaf i at a
givenlevel. Thenfor K = 2, we get the overlap of W, with
&:. For K = 3, weget an overlap of W, with {&;, &}, and
an overlap of W, with &. For agenera K, we get an over-
lap of W; with {&; 41, -, Ek—1}, fordl 0 <i < K —1.

The attribute scheduling, split finding, and partitioning
remain the same. The differenceis that, depending on the

358 54 58 %

NEXT LEVEL

SIMPLE SCHEME: L1 R1 L1 R1 L1 R1 L1 R1
RELABEL SCHEME: L1 - R1 [ R1 - L1

Figure 5. Scheduling attribute files.

window size K, we group K |leavestogether. For each |eaf
within the K-block (i.e., K leaves of the same group), we
first evaluate al attributes. At the last leaf in each block we
perform a barrier synchronization to ensure that all evalua-
tionsfor the current block have completed. The hash probe
for aleaf isconstructed by thelast processor to exit the eval-
uation for that leaf. This ensuresthat no two processors ac-
cess the hash probe at the same time.

Managing attributefiles. Therewere aset of four reusable
files per attribute in the BASIC scheme. However, if we
are to allow overlapping of the hash probe construction
step with the evaluation step, which uses dynamic attribute
scheduling within each leaf, we would require K distinct
files for the current level, and K files for the parent’s at-
tribute lists, that is 2K files per attribute. Thisway all K
leaves in a group have separate files for each attribute and
thereis no read/write conflict. Another complication arises
fromthefact that some children may turn out to bepure(i.e.,
all records belong to the same class) at the next level. Since
these children will not be processed after the next stage, we
have to be careful in the file assignment for these children.
A simple file assignment, without considering the child pu-
rity, wherechildrenareassignedfilesfromo, - - - , K —1, will
not work well, as it may introduce “holes’ in the schedule.
However, if weknew which children will be purein the next
level, we can do better.

The class histograms gathered while splitting the chil-
dren are adequate to determine purity. We add a pre-test
for child purity at this stage. If the child will become pure
at the next level, it is removed from the list of valid chil-
dren, and the files are assigned consecutively among the re-
maining children. This insures that there are no holes in
the K-block, and we get perfect scheduling. The two ap-
proaches are contrasted in Figure 5. The bold circles show
the valid children for the current and next level. With the
simple labeling scheme the file labels for the valid children
are L1, L1, R1, R1, R1. With awindow of size K = 2,
thereisonly oneinstancewherework can overlap, i.e., when
going from L1 to R1. However, if we relabel the valid
children’sfiles then we obtain the perfectly schedulable se-
quence L1, R1,L1,R1, L1.

Thework overlapisachieved at the cost of increased bar-
rier synchronization; one for each K-block. A large win-
dow size not only increases the overlap but also minimizes
thenumber of synchronizations, but alarger window implies
more temporary files, which incur greater file creation over-
head and tend to have less locality. The ideal window size
is atrade-off between the above conflicting goals.



3.23 TheMoving-Window-K Algorithm (MWK)

We now describe the Moving-Window-K (MWK) algo-
rithm, shown in Figure 6. It eliminates the serial bottleneck
of BASIC and expl oits greater parallelism than FWK. Con-
sider aleaf frontier: {L0,, R0y, LO2, R0> }. With awindow
sizeof K = 2, not only is there parallelism available for
fixed blocks {L0,, R0; } and {L0y, R02} (used in FWK),
but also between these two blocks, { R0y, L0, }. The MWK
algorithm uses this extra parallelism.

// Starting with the root node execute the
// following code for each new tree level

forall attributes in parallel (dynamic scheduling)
for each block of K leaves
for each leaf i
if (last block’s i-th leaf not done) then
wait

evaluate attributes (E)

if (last processor finishing on leaf i) then
get winning attribute; form hash-probe (W)
signal that i-th leaf is done

barrier
forall attributes in parallel (dynamic scheduling)
for each leaf
split attributes (S)

Figure 6. The MWK algorithm.

This schemeisimplemented by replacing the barrier per
block of K leaveswith await onaconditional variable. Be-
fore evaluating leaf 7, a check is made whether the i-th |eaf
of the previousblock has been processed. If not, the proces-
sor goes to sleep on the conditional variable. Otherwise, it
proceeds with the current leaf. The last processor to finish
the evaluation of leaf ¢ from the previous block constructs
the hash probe, and then signalsthe conditional variable, so
that any deeping processors are woken up.

It should be observed that the gain in available paral-
lelism comes at the cost of increased lock synchronization
per leaf (however, there is no barrier anymore). Asin the
FWK approach, the files are relabeled by eliminating the
purechildren. A larger K value would increase parallelism,
and while the number of synchronizationsremain about the
same, it will reduce the average waiting time on the condi-
tional variable. Like FWK, this scheme requires 2K files
per attribute, so that each of the K |eaves has separate files
for each attribute and there is no read/write conflict.

3.3 Task Parallel Subtree Algorithm (SUBTREE)

The data parallel approachestarget the parallelism avail-
able among the different attributes. On the other hand the
task parallel approachis based on the parallelism that exists
in different subtrees. Once the attribute lists are partitioned,
each child can be processed in parallel. One implementa
tion of thisideawould betoinitially assign all the processors
to the tree root, and recursively partition the processor sets
along with the attribute lists. Once a processor gains control
of asubtree, it will work only onthat portion of thetree. This
approach would work fine if we have afull tree. In general,
the decision trees areimbalanced and this static partitioning
scheme can suffer from largeload imbal ances. Wetherefore
use a dynamic subtree task parallelism scheme.

The pseudo-code for the dynamic SUBTREE algorithm
isshown in Figure 7. To implement dynamic processor as-

signment to different subtrees, we maintain a queue of cur-
rently idle processors, called the FREE queue. Initialy this
gueue is empty, and all processors are assigned to the root
of the decision tree, and belong to a single group. One pro-
cessor within the group is made the group master (we chose
the processor with the smallest identifier asthe master). The
master is responsible for partitioning the processor set.

SubTree (Processor Group P = {p1, p2, ..., px},
Leaf Frontier L = {I1, 12, ..., ly})

apply SIMPLE algorithm on L with P processors
NewlL = {1, 12, ..., Im} //new leaf frontier

if (NewL is empty) then
put self in FREE queue

elseif (group master) then

get FREE processors; NewP = {p1, p2, ..., pn}

if (only one leaf remaining) then
SubTree (NewP, I1)

elseif (only one processor in group) then
SubTree (pl1l, Newl)

else //multiple leaves and processors
split NewL into L1 and L2
split NewP into P1 and P2
SubTree (P1, L1)
SubTree (P2, L2)

wakeup processors in NewP

else //not the group master
go to sleep

Figure 7. The SUBTREE algorithm.

At any given point in the algorithm, there may be mul-
tiple processor groups working on distinct subtrees. Each
group independently executes the following steps once the
BASIC algorithm has been applied to the current subtree
level. First, the new subtree leaf frontier is constructed. 1f
there are no children remaining, then each processor inserts
itself in the FREE queue, ensuring mutually exclusive ac-
cess vialocking. If thereis more work to be done, then all
processors except the master go to sleep on a conditional
variable. The group master checks if there are any new ar-
rivalsin the FREE queueand grabsall free processorsin the
queue. Thisformsthe new processor set.

There are three possibilities at this juncture. If thereis
only one leaf remaining, then all processors are assigned to
that leaf. If thereis only processor in the previous group
and there is no processor in the FREE queue, then it forms
a group on its own and works on the current leaf frontier.
Lastly, if there are multiple leaves and multiple processors,
the group master splits the processor set into two parts, and
also splits the leaves into two parts. The two newly formed
processor sets becomethe new groups, and work on the cor-
responding leaf sets. Finally, the master wakes up the all
relevant processors — from the original group and those ac-
quired from the FREE queue. For P processors, there are at
most P groups. Since the attribute files for all groups must
be distinct, SUBTREE requires up to 4 P files per attribute.

3.4 Qualitative Algorithm Comparison

The MWK scheme eliminates the hash-probe construc-
tion bottleneck of BASIC viatask pipelining. It fully ex-
ploits the available parallelism via the moving window
mechanism, instead of using the fixed window approach of
FWK. It also eliminates barrier synchronization completely.
However, it introduces a lock synchronization per leaf per
level. If the tree is bushy, then the increased synchroniza-
tion could nullify the other benefits. A feature of MWK and



FWK isthat they exploit parallelism at afiner grain. Theat-
tributesin a K -block may be scheduled dynamically on any
processor. This can have the effect of better load balancing
compared to the coarser grained BASIC approach where a
processor works on all the leaves for agiven attribute.

While MWK is essentially a data parallel approach, it
utilizes some elements of task parallelism in the pipelining
of the evaluation and hash probe construction stages. The
SUBTREE approachisaso ahybrid approachin that it uses
the BASIC scheme within each group. In fact we can aso
use FWK or MWK as the subroutine. The pros of this ap-
proach are that it has only one barrier synchronization per
level within each group and it has good processor utiliza-
tion. As soon as a processor becomesidleit islikely to be
grabbed by someactivegroup. Someof theconsarethatitis
sensitiveto thetree structure and may lead to excessive syn-
chronization for the FREE queue, due to rapidly changing
groups. Another disadvantageisthat it requires more mem-
ory, because we need a separate hash probe per group.

4 Performance Evaluation

We use the execution time as the main metric of classi-
fier performance, since [9] has shown that SLIQ/SPRINT
achieve similar or better classification accuracy and pro-
duce smaller trees when compared to other classifiers like
CART [4] and C4 (a predecessor of C4.5[11]).

4.1 Experimental Setup

Machine Configuration: Experimentswere performed on
two SMP machines ( with different configurations) with a
112 MHz PowerPC-604 processor, and a1 MB L2-Cache.
Machine A has 4 processors, 128 MB memory and 300 MB
disk. Theamount of memory isinsufficient for training data,
temporary files, and data structures altogether to fit in mem-
ory. Thus data reads/writes will go to disk each time. Ma
chine B has 8 processors, 1 GB memory and 2 GB disk. All
the temporary files created during the run will be cached in
memory. Machine A is of greater interest to the database
community and we present a detailed set of experimentsfor
it. However, dueto the decreasing cost of RAM, the second
configurationis also increasingly realizable in practice. We
present this case to study the impact of large memories.
Datasets: We use synthetic datasets proposed in [1], using
two classification functions of different complexity. These
functionsdivide the database into two classes. Function2is
asmplefunctiontolearn andresultsin fairly small decision
trees, while Function 7 is the most complex function and
produceslargetrees(see Table 1). Thenotation Fz-Ay-DzK
isused to denotethe dataset with function z, y attributesand
z - 1000 example records. The database size shown in Ta-
ble 1 isonly the initial size. After SPRINT allocates tem-
porary attribute files the final size is at least twice the ini-
tial size. Thusthe datasetswould require morethan 192 MB
disk space, and would be out-of-core on Machine A, which
has only 128 MB memory.

Setup and Sort Time: Table 1 shows the time for creating
the attribute lists and for sorting the continuous attributes.
For smpledatasets such as F2, it can be significant, whereas

it is negligible for complex datasets such as F7. We have
not focussed on parallelizing these phases, concentratingin-
stead on the more challenging build phase. Consequently
for simple datasets such as F2 the setup and sort time can
be significant. However, for the complex datasets such as
F7 thistimeis small.

4.2 Parallel Performance: Local Disk Access

Our initial experiments (not reported here for lack of
space) confirmed that MWK was indeed better than BASIC
asexpected, and that it performsaswell or better than FWK.
Thus, we will only present the performance of MWK and
SUBTREE. We aso found that a window size of 4 works
well in practice. We consider four main parametersfor per-
formance comparison: 1) number of processors, 2) number
of attributes, 3) number of exampletuples, and 4) classifica-
tion function (Function 2 or Function 7).

Figures 8 and 9 show the parallel performance and
speedup of thetwo algorithmsaswe vary the number of pro-
cessors on Machine A, for the two classification functions
F2 and F7, on the datasets A32-D250K and A64-D125K. The
rightmost charts on each row show the speedup with respect
to total time (including setup and sort time), while the other
charts show only the build time.

Considering the build time only, the speedupsfor both al-
gorithms on 4 processors range from 2.97 to 3.32 for func-
tion F2 and from 3.25 to 3.86 for function F7. For func-
tion F7, the speedups of total time for both algorithms on
4 processors range from 3.12 to 3.67. The important ob-
servation from these figuresis that both algorithms perform
quite well for various datasets. Even the overall speedups
are good for complex datasets generated with function F7.
As expected, the overall speedups for smple datasets gen-
erated by function F2, in which build time isasmaller frac-
tion of total time, arenot asgood (around 2.2t0 2.5 on 4 pro-
cessors). These speedups can be improved by paralélizing
the setup phase more aggressively. MWK'’s performanceis
mostly comparableto or better than SUBTREE. The differ-
ence ranges from 8% worse to 22% better than SUBTREE.
Overdl, MWK isusualy 10% better than SUBTREE.

The overall advantage of MWK over SUBTREE ismore
visiblefor thesimplefunction F2. Thereasonisthat F2 gen-
erates very small trees with 4 levels and a maximum of 2
leavesat any level. Around 40% of thetotal timeisspentin
theroot node, where SUBTREE has only one processgroup.
Thuson thisdataset SUBTREE isunableto fully exploit the
inter-node parallelism successfully. MWK isthewinner be-
causeit not only overlapsthe £ and W phases, but al so man-
agesto reduce the load imbal ance.

The figures also show that on F2, increasing the number
of attributesworsensthe performance of SUBTREE. Thisis
because afree processor canjoin anew group only at theend
of alevel. Aseach processor or group becomesfreeit waits
in the FREE queue to rejoin the computation. However, it
will not be assimilated into the new group until oneof the ex-
isting group finishesworking onal theattributes. Thelarger
the number of attributes the larger the wait, adversely im-
pacting the performance of SUBTREE. On the other hand,
MWK hasthe oppositetrend; moreattributes|ead to a better
attribute scheduling, which tends to minimize imbalance.
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Dataset DB Size Tree Size Setup Time | Sort Time | Total Time | Setup% | Sort %
(MB) No. Levels | Max Leaves/Level (seconds) (seconds) | (seconds)

F2-A32-D250K 96 4 2 685 598 3584 19.1% 16.6%

F2-A64-D125K 96 4 2 705 626 3665 19.2% 17.1%

F7-A32-D250K 96 59 802 838 780 24706 3.4% 3.2%

F7-A64-D125K 96 55 384 672 636 22664 3.0% 2.8%

Table 1. Dataset characteristics, and sequential setup and sorting times.

Another trend is that a large number of processors tends
to favor SUBTREE. This can be seen from figures for both
F2 and F'7 by comparing the build times for the two al-
gorithms first with 2 processors, then with 4 processors.
This is because after about log P levels of the tree growth
(P being the number of processors), the only synchroniza-
tion overhead for SUBTREE, before any processor becomes
free, isthat each processor checksthe FREE queue once per
level. On the other hand, for MWK, there will be relatively
more processor synchronization overhead, as the number
of processorsincreases, which includesacquiring attributes,
checking on conditional variables, and waiting on barriers.

4.3 Parallel Performance: Main-Memory Access

Machine B has 1 GB of main-memory available. Thus,
after the very first access the data will be cached in main-
memory, leading to fast access times. Figures 10 and 11
show sets of timing and speedup charts. For build timeonly,
the speedupsfor both algorithmson 8 processorsrangefrom
5.46 to 6.37 for function F2 and from 5.36 to 6.67 for func-
tion F7. The speedups of total time on F7 for both algo-
rithms on 8 processors range from 4.63 to 5.77 Again, the
important observation is that both algorithms perform very
well for various datasets even up to 8 processors.

5 Conclusion

We presented parallel algorithms for building decision-
tree classifiers on SMP systems. The proposed agorithms
span the gamut of data and task paralelism. The MWK
algorithm uses data paralelism from multiple attributes,
but also uses task pipelining to overlap different comput-
ing phase within atree node, thus avoiding potential sequen-
tial bottleneck for the hash-probe construction for the split
phase. The MWK algorithm employs conditional variable,
not barrier, among leaf nodes to avoid unnecessary proces-
sor blocking time at a barrier. It also exploits dynamic as-
signment of attribute files to a fixed set of physical files,
which maximizesthe number of concurrent accessesto disk
without file interference. The SUBTREE algorithm uses
recursive divide-and-conquer to minimize processor inter-
action, and assigns “free processors’ dynamically to “busy
groups’ to achieve load balancing.

Experiments show that both algorithms achieve good
speedups in building the classifier on a 4-processor SMP
with disk configuration and on an 8-processor SMP with
memory configuration, for various numbers of attributes,
various numbers of example tuples of input databases, and
various complexities of data models. The performance of
both algorithms are comparable, but MWK overal has a
dight edge. These experiments demonstrate that the impor-
tant data mining task of classification can be effectively par-
alelized on SMP machines.
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