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Abstract

Many emerging data mining applications require a proximity (similarity) join between points
in a high-dimensional domain. We present a new algorithm that utilizes a new data structure,
called the �-kd tree, for fast spatial proximity joins on high-dimensional points. This data
structure reduces the number of neighboring leaf nodes that are considered for the join test,
as well as the traversal cost of �nding appropriate branches in the internal nodes. The storage
cost for internal nodes is independent of the number of dimensions. Hence the proposed data
structure scales to high-dimensional data. We analyze the cost of the join for the �-kd tree and
the R-tree family, and show that the �-kd tree will perform better for high-dimensional joins.
Empirical evaluation, using synthetic and real-life datasets, shows that proximity join using the
�-kd tree is typically 2 to 40 times faster than the R+ tree, with the performance gap increasing
with the number of dimensions.

We also discuss how some of the ideas of the �-kd tree can be applied to the R-tree fam-
ily. These biased R-trees perform better than the corresponding traditional R-trees for high-
dimensional proximity joins, but do not match the performance of the �-kd tree.

1 Introduction

Many emerging data mining applications require e�cient processing of proximity (similarity) joins

on high-dimensional points. Examples include applications in time-series databases[AFS93, ALSS95],

multimedia databases [Jag94, NBE+93, NC91], medical databases [ACF+93, TBS90], and scienti�c

databases[Vas93]. Some typical queries in these applications include: (1) discover all stocks with

similar price movements; (2) �nd all pairs of similar images; (3) retrieve music scores similar to a

target music score. These queries are often a prelude to clustering the objects. For example, given

all pairs of similar images, the images can be clustered into groups such that the images in each

group are similar.

To motivate the need for multidimensional indices in such applications, consider the problem

of �nding all pairs of similar time-sequences. The technique in [ALSS95] solves this problem by

breaking each time-sequences into a set of contiguous subsequences, and �nding all subsequences

similar to each other. If two sequences have \enough" similar subsequences, they are considered

similar. To �nd similar subsequences, each subsequence is mapped to a point in a multi-dimensional

�Currently at Bell Laboratories, Murray Hill, NJ.
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space. Typically, the dimensionality of this space is quite high. The problem of �nding similar

subsequences is now reduced to the problem of �nding points that are close to the given point in

the multi-dimensional space. A pair of points are considered \close" if they are within � distance

of each other with some distance metric (such as L2 or L1 norms) that involves all dimensions,

where � is speci�ed by the user. A multi-dimensional index structure (the R+ tree) was used for

�nding all pairs of close points.

This approach holds for other domains, such as image data. In this case, the image is broken

into a grid of sub-images, key attributes of each sub-image mapped to a point in a multi-dimensional

space, and all pair of similar sub-images are found. If \enough" sub-images of two images match,

a more complex matching algorithm is applied to the images.

A closely related problem is to �nd all objects similar to a given objects. This translates to

�nding all points close to a query point.

Even if there is no direct mapping from an object to a point in a multi-dimensional space, this

paradigm can still be used if a distance function between objects is available. An algorithm is

presented in [FL95] for generating a mapping from an object to a multi-dimensional point, given a

set of objects and a distance function.

Current spatial access methods (see [Sam89, Gut84] for an overview) have mainly concentrated

on storing map information, which is a 2-dimensional or 3-dimensional space. While they work

well with low dimensional data points, the time and space for these indices grow rapidly with

dimensionality. Moreover, while CPU cost is high for proximity joins, existing indices have been

designed with the reduction of I/O cost as their primary goal. We discuss these points further later

in the paper, after reviewing current multidimensional indices.

To overcome the shortcomings of current indices for high-dimensional proximity joins, we pro-

pose a structure called the �-kd tree. This is a main-memory data structure optimized for performing

proximity joins. The �-kd tree also has a very small build time. This lets the �-kd tree use the

proximity distance limit � as a parameter in building the tree. Empirical evaluation shows that

the build plus join time for the �-kd tree is typically 2 to 40 times less than the join time for the

R+ tree [SRF87],1 with the performance gap increasing with the number of dimensions. A pure

main-memory data structure would not be very useful, since the data in many applications will not

�t in memory. We present a join algorithm that can handle large amounts of data while still using

the �-kd tree.

Problem De�nition We will consider two versions of the spatial proximity join problem:

� Self-join: Given a set of N high-dimensional points and a distance metric, �nd all pairs of

points that are within � distance of each other.

1Our experiments indicated that the R+ tree was better than the R tree [Gut84] or the R� tree [BKSS90] tree for
high-dimensional proximity joins.
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� Non-self-join: Given two sets S1 and S2 of high-dimensional points and a distance metric,

�nd pairs of points, one each from S1 and S2, that are within � distance of each other.

The distance metric for two n dimensional points ~X and ~Y that we consider is

Lp =

 
nX
1

jXi � Yij
p

!1=p
; 1 � p � 1:

L2 is the familiar Euclidean distance, L1 the Manhattan distance, and L1 corresponds to the

maximum distance in any dimension.

Properties The problem of high-dimensional proximity joins with some distance metric and �

parameter has the following properties:

� The feature vector chosen for similarity comparison is high-dimensional.

� Every dimension of the feature vector is mapped into a numeric value whose bounds are

known.

� The distance function is computed considering every dimension of the feature vector.

� The proximity distance limit � is not large, since indices are not e�ective when the selectivity

of the proximity join is large (i.e. when every point matches with most other points).

Paper Organization. In Section 2, we give an overview of existing spatial indices, and describe

their shortcomings when used for high-dimensional proximity joins. Section 3 describes the �-kd

tree and the algorithm for proximity joins. In Section 4, we analyze the performance for the �-kd

tree and the R+ tree for proximity joins. We give a performance evaluation in Section 5. Section 6

discusses biased R+ trees. We conclude in Section 7.

2 Current Multidimensional Index Structures

We �rst discuss the R-tree family of indices, which are the most popular multi-dimensional indices,

and describe how to use them for proximity joins. We also give a brief overview of other indices.

We then discuss problems of the current index structures for high-dimensional proximity joins.

2.1 The R-tree family

R-tree [Gut84] is a balanced tree in which each node represents a rectangular region. Each internal

node in a R-tree stores a minimum bounding rectangle (MBR) for each of its children. The MBR

covers the space of the points in the child node. The MBRs of siblings can overlap. The decision

whether to traverse a subtree in an internal node depends on whether its MBR overlaps with the

space covered by query. When a node becomes full, it is split. Total area of the two MBRs resulting

from the split is minimized while splitting a node. Figure 1 shows an example of R-tree. This tree
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Figure 1: Example of an R-tree

consists of 4 leaf nodes and 3 internal nodes. The MBRs are N1,N2,L1,L2,L3 and L4. The root

node has two children whose MBRs are N1 and N2.

R� tree [BKSS90] added two major enhancements to R-tree. First, rather than just considering

the area, the node splitting heuristic in R� tree also minimizes the perimeter and overlap of the

bounding regions. Second, R� tree introduced the notion of forced reinsert to make the shape

of the tree less dependent on the order of the insertion. When a node becomes full, it is not

split immediately, but a portion of the node is reinserted from the top level. With these two

enhancements, the R� tree generally outperforms R-tree.

R+ tree [SRF87] imposes the constraint that no two bounding regions of a non-leaf node

overlap. Thus, except for the boundary surfaces, there will be only one path to every leaf region,

which can reduce search and join costs.

X-tree [BKK96] avoids splits that could result in high degree of overlap of bounding regions

for R�-tree. Their experiments show that the overlap of bounding regions increases signi�cantly for

high dimensional data resulting in performance deterioration in the R�-tree. Instead of allowing

splits that produce high degree of overlaps, the nodes in X-tree are extended to more than the

usual block size, resulting in so called super-nodes. Experiments show that X-tree improves the

performance of point query and nearest-neighbor query compared toR�-tree and TV-tree (described

below). No comparison with R+-tree is given in [BKK96] for point data. However, since the R+-

tree does not have any overlap, and the gains for the X-tree are obtained by avoiding overlap, one

would not expect the X-tree to be better than the R+-tree for point data.

Proximity Join The join algorithm using R-tree considers each leaf node, extends its MBR with

�-distance, and �nds all leaf nodes whose MBR intersects with this extended MBR. The algorithm

then performs a nested-loop join or sort-merge join for the points in those leaf nodes, the join

condition being that the distance between the points is at most �. (For the sort-merge join, the

points are �rst sorted on one of the dimensions.)

To reduce redundant comparisons between points when joining two leaf nodes, we could �rst

screen points. The boundary of each leaf node is extended by �, and only points that lie within

the intersection of the two extended regions need be joined. Figure 2 shows an example, where the

rectangles with solid lines represent the MBRs of two leaf nodes and the dotted lines illustrate the
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Figure 2: Screening points for join test

extended boundaries. The shaded area contains screened points.

2.2 Other Index Structures

kdB tree [Rob81] is similar to the R+ tree. The main di�erence is that the bounding rectangles

cover the entire space, unlike the MBRs of the R+ tree.

hB-tree [LS09] is similar to the kdB tree except that bounding rectangles of the children of an

internal node are organized as a K-D tree [Ben75] rather than as a list of MBRs. (The K-D-tree

is a binary tree for multi-dimensional points. In each level of the K-D-tree, only one dimension,

chosen cyclically, is used to decide the subtree for traversal.) Further, the bounding regions may

have rectangular holes in them. This reduces the cost of splitting a node compared to the kdB tree.

TV-tree [LJF94] uses a variable number of dimensions for indexing. TV-tree has a design

parameter � (\active dimension") which is typically a small integer (1 or 2). For any node, only �

dimensions are used to represent bounding regions and to split nodes. For the nodes close to the

root, the �rst � dimensions are used to de�ne bounding rectangles. As the tree grows, some nodes

may consist of points that all have the same value on their �rst, say, k dimensions. Since the �rst

k dimensions can no longer distinguish the points in those nodes, the next � dimensions (after the

k dimensions) are used to store bounding regions and for splitting. This reduces the storage and

traversal cost for internal nodes.

Grid-�le [NHS84] partitions the k-dimensional space as a grid; multiple grid buckets may be

placed in a single disk page. A directory structure keeps track of the mapping from grid buckets

to disk pages. A grid bucket must �t within a leaf page. If a bucket over
ows, the grid is split on

one of the dimensions.

2.3 Problems with Current Indices

The index structures described above su�er from the following problems for performing proximity

joins with high-dimensional points:

5



Figure 3: Number of neighboring leaf nodes.

Number of Neighboring Leaf Nodes. The splitting algorithms in the R-tree variants utilize

every dimension equally for splitting in order to minimize the volume of hyper-rectangles. This

causes the number of neighboring leaf nodes within �-distance of a given leaf node to increase

dramatically with the number of dimensions. To see why this happens, assume that a R-tree has

partitioned the space so that there is no \dead region" between bounding rectangles. Then, with a

uniform distribution in a 3-dimensional space, we may get 8 leaf nodes as shown in Figure 3. Notice

that every leaf node is within �-distance of every other leaf node. In an n dimensional space, there

may be O(2n) leaf nodes within �-distance of every leaf node. The problem is somewhat mitigated

because of the use of MBRs. However, the number of neighbors within �-distance still increases

dramatically with the number of dimensions.

This problem also holds for other multi-dimensional structures, except perhaps the TV-tree.

However, the TV-tree su�ers from a di�erent problem { it will only use the �rst k dimensions for

splitting, and does not consider any of the others (unless many points have the same value in the

�rst k dimensions). With enough data points, this leads to the same problem as for the R-tree,

though for the opposite reason. Since the TV-tree uses only the �rst k dimensions for splitting,

each leaf node will have many neighboring leaf nodes within �-distance.

Note that the problem a�ects both the CPU and I/O cost. The CPU cost is a�ected because of

the traversal time as well as time to screen all the neighboring pages. I/O cost is a�ected because

we have to access all the neighboring pages.

Storage Utilization. The kdB tree and R-tree family, including the X-tree, represent the bound-

ing regions of each node by rectangles. The bounding rectangles are represented by \min" and

\max" points of the hyper-rectangle. Thus, the space needed to store the representation of bound-

ing rectangles increases linearly with the number of dimensions. This is not a problem for the

hB-tree (which does not store MBRs), the TV-tree (which only uses a few dimensions at a time),

or the grid �le.

Traversal Cost. When traversing a R-tree or kdB tree, we have to examine the bounding regions

of children in the node to determine whether to traverse the subtree. This step requires checking

the ranges of every dimension in the representation of bounding rectangles. Thus, the CPU cost

of examining bounding rectangles increases proportionally to the number of dimensions of data

points. This problem is mitigated for the hB-tree or the TV-tree. This is not a problem for the
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grid-�le.

Build Time. The set of objects participating in a spatial join may often be pruned by selection

predicates [LR94] (e.g. �nd all similar international funds). In those cases, it may be faster

to perform the non-spatial selection predicate �rst (select international funds) and then perform

spatial join on the result. Thus it is sometimes necessary to build a spatial index on-the-
y. Current

indices are designed to be built once; the cost of building them can be more than the cost of the

join [PD96].

Skewed Data. Handling skewed data is a problem for the grid-�le. In a k-dimensional space, a

single data page over
ow may result in a k�1 dimensional slice being added to the grid-�le directory.

If the grid-�le had n buckets before the split, and the splitting dimension had m partitions, n=m

new cells are added to the grid after the split. Thus, the size of the directory structure can grow

rapidly for skewed high-dimensional points.

Summary. Each index has good and bad features for proximity join of high-dimensional points.

It would be di�cult to design a general-purpose multi-dimensional index which does not have any

of the shortcomings listed above. However, by designing a special-purpose data structure, we can

attack these problems. We now describe a new data structure, �-kd tree, which is a special-purpose

data structure for this purpose. This data structure can be considered analogous to hash tables

built for equality joins.

3 The �-kd tree

We introduce the �-kd tree in Section 3.1 and then discuss its design rationale in Section 3.2.

3.1 �-kd tree de�nition

We �rst de�ne the �-kd tree2. We then describe how to perform proximity joins using the �-kd tree,

�rst for the case where the data �ts in memory, and then for the case where it does not.

�-kd tree We assume, without loss of generality, that the co-ordinates of the points in each

dimension lie between 0 and +1. Pointers to the data points are stored in leaf nodes. We start

with a single leaf node. Whenever the number of points in a leaf node exceeds a threshold, the leaf

node is split, and converted to an interior node. If the leaf node was at level i, the ith dimension

is used for splitting the node. The node is split into b1=�c parts, such that the width of each new

leaf node in the ith dimension is either � or slightly greater than �. In the rest of this section, we

assume without loss of generality that � is an exact divisor of 1. An example of �-kd tree for two

dimensional space, with � = 0:25, is shown in Figure 4.
2It is really a trie, but we call it a tree since it is conceptually similar to kdB tree.
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Figure 4: �-kd tree

Proximity Join using the �-kd tree Let x be an internal node in the �-kd tree. We use x[i] to

denote the ith child of x. Let f be the fanout of the tree. Note that f = 1=�. Figure 5 describes the

join algorithm. The algorithm initially calls self-join(root), for the self-join version, or join(root1,

root2), for the non-self-join version. The procedures leaf-join(x, y) and leaf-self-join(x) perform a

sort-merge join on leaf nodes.

For high-dimensional data, the �-kd tree will rarely use all the dimensions for splitting. (For

instance, with 10 dimensions and a � of 0.1, there would have to be more than 1010 points before all

dimensions are used.) Thus we can usually use one of the free unsplit dimension as a common \sort

dimension". The points in every leaf node are kept sorted on this dimension, rather then being

sorted repeatedly during the join. When joining two leaf nodes, the algorithm does a sort-merge

using this dimension.

Note that we can use the same join code for all the Lp distance metrics, with only the �nal test

between a pair of points being metric-dependent.

Memory Management The value of � is often given at run-time. Since the value of � is a

parameter for building the data structure, it may not be possible to build a disk-based version

of the �-kd tree in advance. Instead, we sort the multi-dimensional points with the �rst splitting

dimension and keep them as an external �le.

We �rst describe the join algorithm, assuming that main-memory can hold all points within

a 2� distance on the �rst dimension, and then generalize it. The join algorithm �rst reads points

whose values in the sorted dimension lie between 0 and 2�, builds the �-kd tree for those points

in main memory, and performs the proximity join in memory. The algorithm then deallocates the

space used for the points whose values in the sorted dimension are between 0 and �, reads points

whose values are between 2� and 3�, build the �-kd tree for these points, and performs the join
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procedure join(x, y)
begin

if leaf-node(x) and leaf-node(y) then
leaf-join(x, y);

else if leaf-node(x) then begin

for i = 1 to f do

join(x, y[i]);
end

else if leaf-node(y) then begin

for i = 1 to f do

join(x[i], y);
end

else begin

for i = 1 to f � 1 do begin

join(x[i], y[i]);
join(x[i], y[i+1]);
join(x[i+1], y[i]);

end

join(x[f], y[f]);
end

end

procedure self-join(x)
begin

if leaf-node(x) then
leaf-self-join(x);

else begin

for i = 1 to f�1 do begin

self-join(x[i], x[i]);
join(x[i], x[i+1]);

end

self-join(x[f], x[f]);
end

end

Figure 5: Join algorithm

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

Figure 6: Memory Management: Example 1

procedure again. This procedure is continued until all the points have been processed. Note that

we only read each point o� the disk once. This procedure is illustrated in Figure 6. The shaded

portion illustrates the data present in main memory in each step.

This procedure works because the build time for the �-kd tree is extremely small. It can be

generalized to the case where a 2� chunk of the data does not �t in memory. The basic idea is to

partition the data into �2 chunks using an additional dimension. Then, the join procedure (i.e read

points into memory, build �-kd , perform join and so on) is instead repeated for each 4�2 chunk of

the data using the additional dimension. This process is shown in Figure 7. The �rst square shows

the data partitioned into a �� � grid, with the four �2 chunks in the top left corner (11, 12, 21 and

22) shaded. These 4 chunks are read into memory, and the join is performed between these chunks,

and for each chunk. Chunks 11 and 21 are then dropped, chunks 13 and 23 read into memory, and

the joins between 12, 22, 13 and 23 performed. This process continues till all joins are complete.
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Figure 7: Memory Management: Example 2

3.2 Design Rationale

Two distinguishing features of �-kd tree are:

� Biased Splitting : We do not treat all dimensions equally for choosing split points. Instead,

we preferentially split one dimension multiple times.

� � Sized Splitting : When we split a node, we split the node in � sized chunks.

We discuss below how these features help �-kd tree solve the problems with current indices outlined

in Section 2.

Number of Neighboring Leaf Nodes. Recall that with current indices, the number of neigh-

boring leaf pages may increase exponentially with the number of dimensions. The �-kd solves this

problem because of the biased splitting. When the length of the bounding rectangle of each leaf

nodes in the split dimension is at least �, at most two neighboring leaf nodes need to be considered

for the join test. However, as the length of the bounding rectangle in the split dimension becomes

less than �, the number of neighbor leaf nodes for join test increases. Hence when a leaf node

becomes full, we split the node into several children, each of size � in the split dimension. We split

the node into several children at once, rather than gradually, in order to reduce the build time and

the number of children in each neighbor.
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Figure 8: Global and Local Ordering of Split Dimensions

We have two alternatives for choosing the next split dimension: global ordering and local

ordering. Global ordering uses the same split dimension for all the nodes in the same level, while

local ordering chooses the split dimension based on the distribution of points in each node. Examples

of these two cases are shown in Figure 8, for a 3-dimensional space. For both orderings, the

dimension D0 is used for splitting in the root node (i.e. level 0). For global ordering, only D1 is

used for splitting in level 1. However, for local ordering, both D1 and D2 are chosen alternatively

for neighboring nodes in level 1. Consider the leaf node labeled X . With global ordering, it has

5 neighbor leaf nodes (shaded in the �gure). The number of neighbors increases to 9 for local

ordering. Notice that the space covered by the neighbors for global order is a proper subset of

that covered by the neighbors for local ordering. The di�erence in the space covered by the two

orderings increases as � decreases. Hence we chose global ordering for split dimensions, rather than

local ordering.

When the number of points are so huge that the �-kd tree is forced to split every dimension, then

the number of neighbors will be comparable to other indices. However, till that limit, the number

of neighbors depends on the number of points (and their distribution) and �, and is independent of

the number of dimensions.

The order in which dimensions are chosen for splitting can signi�cantly a�ect the space utiliza-

tion and join cost if correlations exist between some of the dimensions. This problem can be solved

by statistically analyzing a sample of the data, and choosing for the next split the dimension that

has the least correlation with the dimensions already used for splitting.

Space Requirements. For each internal node, we simply need an array of pointers to its children.

We do not need to store minimum bounding rectangles because they can be computed. Hence the

space required depends only on the number of points (and their distribution), and is independent

of the number of dimensions.

Traversal Cost. Since we split nodes in � sized chunks, traversal cost is extremely small. The

join procedure never has to check bounding rectangles of nodes to decide whether or not they may
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Total number of points T

Range of points 0 to 1

R+ tree �-kd tree

Average number of points per leaf node Nr Ne

Number of dimensions used for splitting Dr De

Table 1: Notation

contain points within � distance.

Build time. The build time is small because we do not have complex splitting algorithms, or

splits that propagate upwards.

Skewed data. Since splitting a node does not a�ect other nodes, the �-kd tree will handle skewed

data reasonably.

4 Analysis

In this section, we analyze the number of join tests for the �-kd tree, and the number of join and

screen tests for the R+ tree. The goal is to understand the behavior of the indices as the number

of dimensions and number of points vary. For simplicity, we assume that the MBRs of the R+

tree cover the whole space. (That is, we really use a K-D-B tree as a proxy for the R+ in this

analysis. For datasets with a lot of points, the gap between the MBRs will be small; hence this

is a reasonable approximation.) In this analysis, we only consider uniform distribution of points.

We also assume that the R+ tree will always split a rectangle on a dimension which has not been

used for splitting (if such a dimension is available),3 and that the bounding rectangle is split at its

midpoint. Further, we assume that the set of free dimensions is the same for all leaf pages. This

issue is similar to the issue of global vs. local splitting for the �-kd tree; hence this assumption is

favorable to the R+ tree.

We �rst consider the cases where both the R+ tree and the �-kd tree have unsplit dimensions

left, and then extrapolate to the case where either the R+ tree, or both indices, have no unsplit

dimensions. Table 1 summarizes the notation we will use in this section.

4.1 R
+ tree: analysis

Recall that in the R+ tree, the join test is performed for points in each leaf node, as well as between

pairs of leaf nodes that have an overlap when their MBRs are extended by �. A naive approach

to performing the join test would be to use the nested-loop join. In other words, for each point in

3The traditional splitting heuristic which tries to minimize both the volume and perimeter of the hyper-rectangles
will result in the R+ tree usually splitting the MBR on a dimension which has not been used for splitting.
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(a) 1-dimensional boundary (b) 0-dimensional boundary

Figure 9: E�ect of Screening

left leaf node, we examine all points in right leaf node. However, as shown earlier in Figure 2, the

algorithm can �rst screen the points in each leaf nodes to see if they �t within the extended MBR

of the other leaf node.

Let Dr be the number of split dimensions used by the R+ tree. Then the R+ tree will have 2Dr

pages, with T=2Dr points in each. Let Lm be the maximum number of points in a leaf page. Since

T=2Dr < Lm, Dr = dlog2(T=Lm)e.

Note every leaf page falls within the extended MBR of every other leaf node, since they all meet

at the mid-point of the space. Thus for each leaf page, the points in every other leaf page have to

be screened. Since there are T=Nr pages, and T points have to be screened for each page, the total

number of screen tests is given by

# Screen Tests � T 2=Nr (1)

Next, we look at the number of join tests. If two leaf nodes have a (Dr�k)-dimensional common

boundary (among the dimensions used for splitting), the expected number of points in each node

left after screening is Nr�(2�)k, where Nr is the average number of points in a leaf node. (For each

dimension which is not a boundary, 2� of the remaining points are left after screening, since the

size of the page in each dimension is 1/2.) This is illustrated in Figure 9. For the two leaf nodes

with a 1-dimensional (0-dimensional) common boundary, there are 2� (4�2) of the points left after

screening on each node. The number of join tests for two leaf pages with a (Dr�k)-dimensional

common boundary would be (Nr � (2�)k)2, using a nested-loop join. If we �rst sort the points on

one of the dimensions, and use a sort-merge join, the cost drops to

(Nr � (2�)k)2 � 2� = Nr
2 � (2�)2k+1 (2)

We do not count the time for the sort, since we can sort all the points on one of the unsplit

dimensions at the time the tree is built.

Hence, if we know the number of neighbor leaf nodes that have a common (Dr�k)-dimensional

boundary, we can estimate the number of join tests. We can represent the position of each leaf page

in Dr-dimensional space as a Dr-dimensional boolean array, where \True" in the k-th dimension

would correspond to the node being above the mid-point of the space in the k-th dimension. If

two leaf pages had the same value for k dimensions, they would have a k-dimensional common
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boundary. Since there are

 
Dr

k

!
ways of choosing k dimensions that are the same, each leaf page

has

 
Dr

k

!
neighbors that have a k-dimensional common boundary.

We can now compute the total number of join tests, for all (T=Nr) leaf pages, by plugging in

(2).

# Join Tests = (T=Nr)�
DrX
i=1

 
Dr

i

!
�Nr

2 � (2�)2i+1 = T �Nr �
DrX
i=1

 
Dr

i

!
� (2�)2i+1

Since � is typically quite small, �2 would be considerably smaller than Dr. Hence we can ignore

terms with �5 or higher powers of �, resulting in

T �Nr �Dr � 8�3 (3)

The above formula does not include the cost of a self-join on the points in each leaf page. Since

this requires N2
r � 2� comparisons per leaf page, and there are (T=Nr) pages, the total number of

join tests for these self-joins is

T �Nr � 2� (4)

Combining (3) and (4), we get

# Join Tests � T �Nr � 2� � (1 +Dr � 4�2) (5)

Since typically Nr� < (T=Nr) (the number of points per pages times � is less than the number

of leaf pages), and Dr � 4�2 < 1, we get

T �Nr � 2� < T � T=Nr

That is, the number of join tests (Equation 5) is less than the number of screen tests (Equation 1).

Someone might argue that not performing screen test may improve the cost of proximity join.

Assume that we do not perform screen and perform sort-merge join only. Then, the number of join

tests between a pair of leaf nodes becomes Nr � Nr � 2�. The cost of screening points for a pair

of leaf pages is 2Nr. Since Nr � � > 1, the join cost without screening is more expensive than the

cost of screening.

4.2 �-kd tree: analysis

Let the �-kd tree have a depth of De. Each leaf has Ne � T�De points on average. Recall that

there is no screen cost for the �-kd . If we use a sort-merge join, the join cost between a pair of leaf

nodes is

Ne �Ne � 2�

14



We do not count the time for the sort since that can be done at the time the tree is built (that is,

once per leaf node, rather than once per pair of leaf nodes within � distance).

A leaf node in the �-kd has at most 3De� 1 neighbors within � distance. Now, 3De � 1 �

(T=Ne) � (3�)De, since (T=Ne) is the number of leaf nodes, and (3�)De the fraction of leaf nodes

within � distance.

Thus the total number of join tests is

(T=Ne)� [(T=Ne)� (3�)De ]�Ne
2 � 2� = T 2 � 2� � (3�)De

We can simplify the formula by multiplying by a fudge factor of 1.5 (at the cost of penalizing the

�-kd tree a little). Thus we get

# Join Tests � T 2 � (3�)De+1 (6)

4.3 Comparison of costs

Since there are no screen costs for the �-kd tree, Equation 6 shows the dominant factor behind the

performance of the �-kd tree. We can now compare this with the dominant factor for the R+ tree,

the number of screen tests given in Equation 1. From the two equations, the �-kd tree will be faster

than the R+ tree when

(3�)De+1 < (1=Nr) (7)

Plugging in some typical values, Nr = 50; � = 0:05 into Equation 7, the number of tests for the

�-kd tree is considerably smaller even for De = 2. Note that the performance of the R+ tree cannot

be improved by increasing the size of leaf pages (thus decreasing 1=Nr), since the join cost would

become dominant as the size increased.

Equation 7 ignores traversal cost, which is much lower for the �-kd tree than the R+ tree since

the �-kd does not have to check for intersection of MBRs. Further, Equation 7 ignores the number

of join tests for the R+ tree completely and just considers screen costs. On the other hand, since

the R+ tree does not partition the space, but uses MBRS, the number of screens for the R+ tree

is likely to be somewhat less than suggested by the above formulae.

In Section 5.5, we give empirical results for the number of join tests for the �-kd tree, and the

number of join and screen tests for the R+ tree, while varying several parameters. These results

correlate well with the above analysis.

4.4 Other Cases

We now consider the case where both indices have no unsplit dimensions, followed by the case

where only the R+ tree has unsplit dimensions. (Since the R+ tree does unbiased splitting, it will

always run out of dimensions before the �-kd tree.)
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If the �-kd tree has no unsplit dimensions left, we expect the number of join tests to be similar

for the �-kd tree and the R+ tree, since both of them will partition the space in a similar manner.

For high-dimensional data, we expect this case to be very rare. For example, with a � of 0.1, and

10 dimensional data, there have to be more than 1011 points before this occurs.

If only the R+ tree has no unsplit dimensions left, the performance gap will narrow compared

to the case where both trees have unsplit dimensions. As the R+ tree �lls the space, the screen

cost becomes less dominant compared to the join cost. However, the sum of the costs is still higher

than for the �-kd tree, since the R+ tree still operates in a higher dimensional space than the �-kd

tree. Another way to look at this case is to consider it being in between the case where both trees

having unsplit dimensions and case where both trees having no unsplit dimensions. Since there is

a gradual transition, the performance gap narrows till the number of join plus screen tests become

comparable when both trees have no unsplit dimensions left.

5 Performance Evaluation

We empirically compared the performance of the �-kd tree with both R+ tree and a sort-merge

algorithm. The experiments were performed on an IBM RS/6000 250 workstation with a CPU

clock rate of 66 MHz, 128 MB of main memory, and running AIX 3.2.5. Data was stored on a local

disk, with measured throughput of about 1.5 MB/sec.

We �rst describe the algorithms compared in Section 5.1, and the datasets used in experiments

in Section 5.2. Next, we show the performance of the algorithms on synthetic and real-life datasets

in Sections 5.3 and 5.4 respectively. Finally, we explain the observed performance by looking at

the number of join tests and screen counts in Section 5.5.

5.1 Algorithms

�-kd tree. We implemented the �-kd tree algorithm described in Section 3.1. A leaf node was

converted to an internal node (i.e. split) if its memory usage exceeded 4096 bytes. However, if

there were no dimensions left for splitting, the leaf node was allowed to exceed this limit. The

execution times for the �-kd tree include the I/O cost of reading an external sorted �le containing

the data points, as well as the cost of building the data structure. Since the external �le can be

generated once and reused for di�erent value of �, the execution times do not include the time to

sort the external �le.

R+ tree. Our experiments indicated that the R+ tree was faster than the R� tree for proximity

joins on a set of high-dimensional points. (Recall that the di�erence between R+ tree and R? tree

is that R+ tree does not allow overlap between minimum bounding rectangles. Hence it reduces

the number of overlapping leaf nodes to be considered for the spatial proximity join, resulting in

faster execution time.) We therefore used R+ tree for our experiments. We used a page size of 4096
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�-kd R+ tree Sort-Merge
Join Cost Yes Yes Yes
Build Cost Yes No {
Sort Cost (�rst dim.) No { No

Table 2: Costs included in the execution times.

Parameter Default Value Range of Values
Number of Points 100,000 10,000 to 1 million
Number of Dimensions 10 4 to 28
� (join distance) 0.1 0.01 to 0.2
Range of Points -1 to +1 -same-
Distance Metric L2-norm L1, L2, L1 norms

Table 3: Synthetic Data Parameters

bytes. In our experiments, we ensured that the R+ tree always �t in memory and a built R+ tree

was available in memory before the join execution began. Thus, the execution time for R+ tree

does not include any build time | it only includes CPU time for main-memory join. (Although

this gives the R+ tree an unfair advantage, we err on the conservative side.)

2-level Sort-Merge. Consider a simple sort-merge algorithm, which reads the data from a �le

sorted on one of the dimensions and performs the join test on all pairs of points whose values in the

sort dimension are closer than �. We implemented a more sophisticated version of this algorithm,

which reads a 2� chunk of the sorted data into memory, further sorts in memory this data on a

second dimension, and then performs the join test on pairs of points whose values in the second

sort dimension are close than �. The algorithm then drops the �rst � chunk from memory and reads

the next � chunk, and so on. The execution times reported for this algorithm also do not include

the external sort time.

Table 2 summarizes the costs included in the execution times for each algorithm.

5.2 Data Sets and Performance Metrics

Synthetic Datasets. We generated two types of synthetic datasets: uniform and gaussian. The

values in each dimension were randomly generated in the range �1:0 to 1:0 with either uniform or

gaussian distribution. For the Gaussian distribution, the mean and the standard deviation were

0 and 0.25 respectively. Table 3 shows the parameters for the datasets, along with their default

values and the range of values for which we conducted experiments.

Distance Functions We used L1, L2 and L1 as distance functions in our experiments. The

extended bounding rectangles obtained by extending MBRs by � di�er slightly in R+ tree depending

on distance functions. Figure 10 shows the extended bounding regions for the L1, L2 and L1 norms.
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(a) L1 (b) L2 (c) L1

Figure 10: Bounding Regions extended by �
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Figure 11: Performance on Synthetic Data: � Value

The rectangles with solid line represents the MBR of a leaf node and the dashed lines the extended

bounding regions. This di�erence in the regions covered by the extended regions may result in a

slightly di�erent number of intersecting leaf nodes for a given a leaf node. However, in the R-tree

family of spatial indices, the selection query is usually represented by rectangles to reduce the cost

of traversing the index. Thus, the extended bounding rectangles to be used to traverse the index

for both L1 and L2 become the same as that for L1.

5.3 Results on Synthetic Data

� value. Figure 11 shows the results of varying � from 0.01 to 0.2, for both uniform and gaussian

data distributions. L2 is used as distance metric. We did not explore the behavior of the algorithms

for � greater than 0.2 since the join result becomes too large to be meaningful. Note that the

execution times are shown on a log scale. The �-kd tree algorithm is typically around 2 to 20 times

faster than the other algorithms. For low values of � (0.01), the 2-level sort-merge algorithm is quite

e�ective. In fact, the sort-merge algorithm and the �-kd algorithm do almost the same actions,

since the �-kd will only have around 2 levels (excluding the root). For the gaussian distribution,

the performance gap between the �-kd tree and the R+ tree narrows for high values of � because

the join result is very large.
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Figure 12: Performance: Distance Metrics (Gaussian Distribution)

Distance Metric. Figure 12 shows the results of varying � for the L1 and L1 norms for the gaus-

sian distribution. The results for the same datasets for the L2 norm were shown in Figure 11. The

relative performance of the algorithms is almost identical for the three distance metrics. Although

not shown, we obtained similar results for the uniform distribution, and in our other experiments

as well. Hence we only show the results for the L2-norm in the remaining experiments.

Number of Dimensions. Figure 13 shows the results of increasing the number of dimensions

from 4 to 28. Again, the execution times are shown using a log scale. The �-kd algorithm is around

5 to 19 times faster than the sort-merge algorithm. For 8 dimensions or higher, it is around 3 to 47

times faster than the R+ tree, the performance gap increasing with the number of dimensions. For

4 dimensions, it is only slightly faster, since there are enough points for the �-kd tree to be �lled in

all dimensions.

For the R+ tree, increasing the number of dimensions increases the overhead of traversing the

index, as well as the number of neighboring leaf nodes and the cost of screening them. Hence the

time increases dramatically when going from 4 to 28 dimensions.4 Even the sort-merge algorithm

performs better than the R+ tree at higher dimensions. In contrast, the execution time for the �-kd

remains roughly constant as the number of dimensions increases.

Number of Points. To see the scale up of �-kd tree, we varied the number of points from 10,000

to 1,000,000. The results are shown in Figure 14. For R+ tree, we do not show results for 1,000,000

points because the tree no longer �t in main memory. None of the algorithms have linear scale-up;

but the sort-merge algorithms has somewhat worse scaleup than the other two algorithms. For the

gaussian distribution, the performance advantage of the �-kd tree compared to the R+ tree remains

fairly constant (as a percentage). For the uniform distribution, the relative performance advantage

4The dip in the R+ tree execution time when going from 4 to 8 dimension for the gaussian distribution is because
of the decrease in join result size. This e�ect is also noticeable for the �-kd tree, for both distributions.
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Figure 13: Performance on Synthetic Data: Number of Dimensions
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Figure 14: Performance on Synthetic Data: Number of Points

of the �-kd tree varies since the average depth of the �-kd tree does not increase gradually as the

number of points increases. Rather, it jumps suddenly, from around 3 to around 4, etc. These

transitions occur between 20,000 and 50,000 points, and between 500,000 and 750,000 points.

Non-self-joins. Figure 15 shows the execution times for a proximity join between two di�erent

datasets (generated with di�erent random seeds). The size of one of the datasets was �xed at

100,000 points, and the size of the other dataset was varied from 100,000 points down to 5,000

points. For experiments where the second dataset had 10,000 points or fewer, each experiment was

run 5 times with di�erent random seeds for the second dataset and the results averaged. With

both datasets at 100,000 points, the performance gap between the R+ tree and the �-kd tree is

similar to that on a self-join with 200,000 points. As the size of the second dataset decreases, the

performance gap also decreases. The reason is that the time to build the index is included for the

�-kd tree, but not for the R+ tree.
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Figure 15: Non-self-joins
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Figure 16: Performance on Mutual Fund Data

5.4 Experiment with a Real-life Data Set

We experimented with the following real-life dataset.

Similar Time Sequences Consider the problem of �nding similar time sequences. The algorithm

proposed in [ALSS95] �rst �nds similar \atomic" subsequences, and then stitches together the

atomic subsequence matches to get similar subsequences or similar sequences. Each sequence is

broken into atomic subsequences by using a sliding window of size w. The atomic subsequences

are then mapped to points in a w-dimensional space. The problem of �nding similar atomic

subsequences now corresponds to the problem of �nding pairs of w-dimensional points within �

distance of each other, using the L1 norm. (See [ALSS95] for the rationale behind this approach.)

The time sequences in our experiment were the daily closing prices of 795 U.S. mutual funds,

from Jan 4, 1993 to March 3, 1995. There were around 400,000 points for the experiment (since each

sequence is broken using a sliding window). The data was obtained from the MIT AI Laboratories'

Experimental Stock Market Data Server (http://www.ai.mit.edu/stocks/mf.html). We varied the
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window size (i.e. dimension) from 8 to 16 and � from 0.05 to 0.2. Figure 16 shows the resulting

execution times for the three algorithms. The results are quite similar to those obtained on the

synthetic dataset, with the �-kd tree outperforming the other two algorithms.

5.5 Number of join and screen tests

Figure 17 shows the number of join tests and screen counts for the 3 algorithms. In general, the

R+ tree has fewer join tests than the �-kd tree, but considerably more screen tests.

Notice that the relative curves for the join tests for the �-kd and sort-merge, and the screen

tests for the R+ tree, are very similar to the execution times shown in Section 5.4.

The relative number of join and screen tests for the R+ tree, and the join tests �-kd tree are also

as predicted by the analysis in Section 4. In particular, consider the graphs showing the numbers

of tests while varying the number of dimensions. At higher dimensions, the R+ tree has a lot more

screen tests than join tests. The gap decreases at lower dimensions as the R+ trees \�lls out"

the space. Further, the number of join tests for the �-kd tree is independent of the number of

dimensions.

As the number of points increases, the number of join tests for the �-kd tree increases smoothly

for the gaussian data, since the average height of the tree increases smoothly. For uniform data, the

number of join tests actually decreases when going from 25,000 to 50,000 points and from 500,000

to 750,000 points. The reason is that the average depth of the �-kd tree jumps from around 3

(excluding the root) to around 4 and from 4 to 5, decreasing the number of join tests.

5.6 Summary

The �-kd tree was typically 2 to 47 times faster than the R+ tree on self-joins, with the performance

gap increasing with the number of dimensions. It was typically 2 to 20 times faster than the sort-

merge. The 2-level sort-merge was usually slower than R+ tree. But for high dimensions (> 15) or

low values of � (0.01), it was faster than the R+ tree.

For non-self-joins, the results were similar when the datasets being joined were not of very

di�erent sizes. For datasets with di�erent sizes (e.g. 1:10 ratio), the �-kd tree was still faster than

the R+ tree. But the performance gap narrowed since we include the build time for the �-kd tree,

but not for the R+ tree.

The distance metric did not signi�cantly a�ect the results: the relative performance of the

algorithms was almost identical for the L1, L2 and L1 norms.

6 Biased R-trees

We showed that the �-kd is a fast data structure for high-dimensional proximity joins. Since the

R-tree family is a very popular index structure, and many commercial systems have implemented
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Figure 18: E�ect of using di�erent build �s

R trees, we decided to explore the possibility of incorporating some the ideas used in the �-kd tree

to the R tree family. Although we look at the R+ tree in this section, we expect the results to also

apply to other members of the R tree family.

So far, we built the �-kd tree on the 
y, as required. However, this is not an option for the R+

tree since its build time is much higher. We �rst examine the performance of the �-kd tree when

built with a di�erent � value than the � value used for the proximity join, to see if it still maintains

its performance advantage.

6.1 Using di�erent build and join � values for the �-kd tree

We looked at the result of building the �-kd tree with one � value, say the build �, and doing the

join with a di�erent �, say the join �. Figure 18 shows the execution time for a �xed join � of 0.1,

for di�erent build � values. The horizontal line shows the time for the R+ tree for the same join.

As expected, the best performance for the �-kd tree occurs when the build � is the same as the join

�. However, its performance is better than that for the R+ tree throughout a wide range of build

� values. There are several e�ects which impact the shape of the graph.

Build � > 0.1 As the build � increases, the number of join test increases, since the volume of

the space in adjacent buckets increases. This results in a gradual increase in the overall execution

time, for both distributions.

Build � < 0.1 For build � from 0.1 to around 0.025, the dominant factor is again the number of

join tests. Assume the depth each leaf node is k. When both build and join � are 0.1, each leaf

node has 3k�1 neighbors within � distance. However, when the build � value is a bit smaller than

0.1 (e.g. 0.099), there are 5k�1 neighbors within � distance for each leaf node. Since the number

of points in each bucket is almost the same whether the build � is 0.1 or 0.099, the total number
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of join tests shoots up when the build � is decreased slightly from 0.1. As the build � decreases

further, the number of points in each leaf node decreases, while the number of neighbors stays the

same. Hence the number of join tests, and the total execution time decrease from build � of 0.099

through 0.05. When the build � decreases from 0.05 to 0.049, the number of neighbors jumps again,

from 5k�1 to 7k�1, and the cycle continues. For the uniform distribution, the average height of

the tree decreases abruptly by around 1 level when the build � is around 0.06. Hence the number

of join tests increases. For the gaussian distribution, there are no abrupt changes in the level of

the tree. Hence this pattern is clearly visible from 0.1 to around 0.02.

Build � � 0.1 For build � below 0.02, the dominant factor is the traversal cost. For the uniform

distribution, the number of leaf nodes increases threefold as the build � drops from 0.02 to 0.01.

More importantly, the number of neighbors to look at increases from around 103 to 203. Though

the number of join tests does not change dramatically, the overhead of making function calls while

traversing the tree increases the overall time. For the uniform distribution, this e�ect is mitigated

by the fact that the average height of the tree comes down as the build � decreases from 0.02 to

0.015. Hence the overall time actually comes down before increasing again.

6.2 Biased Splitting for the R
+ tree

Since the �-kd tree retains its performance advantage even if it is built with a di�erent � than the

join �, we explore using � as a parameter for building the R+ tree. We apply a biased splitting

heuristic to the R+ tree: the same dimension is selected repeatedly for splitting as long as the

length of this dimension in the MBR is at least 2�. Traditional heuristics are used to decide the

split point in the split dimension. If the length of the current split dimension is less than 2�, the

split heuristic moves to the next dimension cyclically. We call this modi�ed R+ tree the biased R+

tree.

We compared two versions of R+-tree, one with a traditional splitting algorithm (that is,

unbiased splitting) and the other with biased splitting algorithm.

Figure 19 shows that the average number of leaf nodes within � distance for the R+ tree and

the biased R+ tree, as the number of dimensions increases. Biased splitting results in around 5 to

25 times fewer intersecting pages, with the ratio increasing with the number of dimensions.

Figure 20 shows the execution times for the biased R+ tree. As expected, the performance is

mid-way between the performance of the R+ tree and the �-kd tree. There are two main reasons

for the biased R+ tree remaining slower than the �-kd tree. First, the traversal cost is much higher

for the biased R+ tree since the extended regions for each leaf page still have to be checked against

the MBRs in internal nodes. Second, the biased splitting heuristic stops splitting at 2�, compared

to � for the �-kd tree. We obtained similar results when varying � and the number of points.

Since the biased R+ tree only uses a few dimensions for splitting at each level, it need not store
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Figure 19: Average Number of Intersecting Leaf Pages
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Figure 20: Performance of Biased R+ trees

all the dimensions for the MBRs at the higher levels of the tree. This optimization, similar to (and

inspired by) that in the TV-tree, should reduce both the storage cost and traversal cost. However,

it will still not beat the �-kd tree since traversal cost will not drop to the level of the �-kd tree.

7 Conclusions

We presented a new algorithm and a data structure, called the �-kd tree, for fast spatial proximity

joins on high-dimensional points. Such proximity joins are needed in many emerging data mining

applications. The new data structure reduces the number of neighbor leaf nodes that are considered

for the join test, as well as the traversal cost of �nding appropriate branches in the internal nodes.

The storage cost for internal nodes is independent of the number of dimensions. Hence it scales to
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high-dimensional data.

We analyzed the number of join and screen tests for the �-kd tree and the R+ tree, and showed

that the �-kd tree will perform considerably better for high-dimensional points. The analytical

results were con�rmed by empirical evaluation using synthetic and real-life datasets. Proximity

joins using the �-kd tree were typically 2 to 40 times faster than with the R+ tree on these datasets,

with the performance gap increasing with the number of dimensions.

Given the popularity of the R-tree family of index structures, we have also studied how the

ideas of the �-kd tree can be grafted to the R-tree family. We found that the resulting biased R-tree

performs much better than the R-tree for high-dimensional proximity joins, but the �-kd tree still

did better.
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