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Abstract

Many emerging data mining applications require a sim-
ilarity join between points in a high-dimensional domain.
We present a new algorithm that utilizes a new index struc-
ture, called the�-kdB tree, for fast spatial similarity joins
on high-dimensional points. This index structure reduces
the number of neighboring leaf nodes that are considered
for the join test, as well as the traversal cost of finding ap-
propriate branches in the internal nodes. The storage cost
for internal nodes is independent of the number of dimen-
sions. Hence the proposed index structure scales to high-
dimensional data. Empirical evaluation, using synthetic
and real-life datasets, shows that similarity join using the
�-kdB tree is 2 to an order of magnitude faster than theR+

tree, with the performance gap increasing with the number
of dimensions.

1 Introduction

Many emerging data mining applications require effi-
cient processing of similarity joins on high-dimensional
points. Examples include applications in time-series
databases[1, 2], multimedia databases [9, 14, 13], medical
databases [3, 21], and scientific databases[22]. Some typ-
ical queries in these applications include: (1) discover all
stocks with similar price movements; (2) find all pairs of
similar images; (3) retrieve music scores similar to a target
music score. These queries are often a prelude to clustering
the objects. For example, given all pairs of similar images,
the images can be clustered into groups such that the images
in each group are similar.

To motivate the need for multidimensional indices in
such applications, consider the problem of finding all pairs
of similar time-sequences. The technique in [2] solves this
problem by breaking each time-sequences into a set of con-
tiguous subsequences, and finding all subsequences simi-
lar to each other. If two sequences have “enough” similar
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subsequences, they are considered similar. To find similar
subsequences, each subsequence is mapped to a point in a
multi-dimensional space. Typically, the dimensionality of
this space is quite high. The problem of finding similar sub-
sequences is now reduced to the problem of finding points
that are close to the given point in the multi-dimensional
space. A pair of points are considered “close” if they are
within � distance of each other with some distance metric
(such asL2 or L1 norms) that involves all dimensions,
where� is specified by the user. A multi-dimensional in-
dex structure (theR+ tree) was used for finding all pairs of
close points.

This approach holds for other domains, such as image
data. In this case, the image is broken into a grid of sub-
images, key attributes of each sub-image mapped to a point
in a multi-dimensional space, and all pair of similar sub-
images are found. If “enough” sub-images of two images
match, a more complex matching algorithm is applied to
the images.

A closely related problem is to find all objects similar to
a given objects. This translates to finding all points close to
a query point.

Even if there is no direct mapping from an object to a
point in a multi-dimensional space, this paradigm can still
be used if a distance function between objects is available.
An algorithm is presented in [7] for generating a mapping
from an object to a multi-dimensional point, given a set of
objects and a distance function.

Current spatial access methods (see [18, 8] for an
overview) have mainly concentrated on storing map infor-
mation, which is a 2-dimensional or 3-dimensional space.
While they work well with low dimensional data points, the
time and space for these indices grow rapidly with dimen-
sionality. Moreover, while CPU cost is high for similarity
joins, existing indices have been designed with the reduc-
tion of I/O cost as their primary goal. We discuss these
points further later in the paper, after reviewing current mul-
tidimensional indices.

To overcome the shortcomings of current indices for
high-dimensional similarity joins, we propose a structure



called the�-kdB tree. This is a main-memory data structure
optimized for performing similarity joins. The�-kdB tree
also has a very small build time. This lets the�-kdB tree
use the similarity distance limit� as a parameter in building
the tree. Empirical evaluation shows that the build plus join
time for the�-kdB tree is typically 3 to 35 times less than the
join time for theR+ tree [19],1 with the performance gap
increasing with the number of dimensions. A pure main-
memory data structure would not be very useful, since the
data in many applications will not fit in memory. We extend
the join algorithm to handle large amount of data while still
using the�-kdB tree.

Problem Definition We will consider two versions of the
spatial similarity join problem:

� Self-join: Given a set ofN high-dimensional points
and a distance metric, find all pairs of points that are
within � distance of each other.

� Non-self-join: Given two setsS1 and S2 of high-
dimensional points and a distance metric, find pairs
of points, one each fromS1 andS2, that are within�
distance of each other.

The distance metric for twon dimensional points~X and~Y
that we consider is

Lp =

 
nX
1

jXi � Yij
p

!1=p

; 1 � p �1:

L2 is the familiar Euclidean distance,L1 the Manhattan dis-
tance, andL1 corresponds to the maximum distance in any
dimension.

Paper Organization. In Section 2, we give an overview
of existing spatial indices, and describe their shortcomings
when used for high-dimensional similarity joins. Section 3
describes the�-kdB tree and the algorithm for similarity
joins. We give a performance evaluation in Section 4 and
conclude in Section 5.

2 Current Multidimensional Index Struc-
tures

We first discuss the R-tree family of indices, which are
the most popular multi-dimensional indices, and describe
how to use them for similarity joins. We also give a brief
overview of other indices. We then discuss inadequacies of
the current index structures.

1Our experiments indicated that theR+ tree was better than theR tree
[8] or theR� tree [4] tree for high-dimensional similarity joins.
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Figure 1. Example of an R-tree

2.1 TheR-tree family

R-tree [8] is a balanced tree in which eachnode repre-
sents a rectangular region. Each internal node in aR-tree
stores aminimum bounding rectangle (MBR)for each of
its children. The MBR covers the space of the points in the
child node. The MBRs of siblings can overlap. The decision
whether to traverse a subtree in an internal node depends on
whether its MBR overlaps with the space covered by query.
When a node becomes full, it is split. Total area of the two
MBRs resulting from the split is minimized while splitting a
node. Figure 1 shows an example ofR-tree. This tree con-
sists of 4 leaf nodes and 3 internal nodes. The MBRs are
N1,N2,L1,L2,L3 and L4. The root node has two children
whose MBRs are N1 and N2.

R� tree [4] added two major enhancements to R-tree.
First, rather than just considering the area, the node split-
ting heuristic inR� tree also minimizes the perimeter and
overlap of the bounding regions. Second,R� tree intro-
duced the notion offorced reinsertto make the shape of the
tree less dependent on the order of the insertion. When a
node becomes full, it is not split immediately, but a portion
of the node is reinserted from the top level. With these two
enhancements, theR� tree generally outperformsR-tree.

R+ tree [19] imposes the constraint that no two bound-
ing regions of a non-leaf node overlap. Thus, except for the
boundary surfaces, there will be only one path to every leaf
region, which can reduce search and join costs.

X-tree [6] avoids splits that could result in high degree of
overlap of bounding regions forR�-tree. Their experiments
show that the overlap of bounding regions increases signif-
icantly for high dimensional data resulting in performance
deterioration in theR�-tree. Instead of allowing splits that
produce high degree of overlaps, the nodes in X-tree are
extended to more than the usual block size, resulting in
so called super-nodes. Experiments show that X-tree im-
proves the performance of point query and nearest-neighbor
query compared toR�-tree and TV-tree (described below).
No comparison withR+-tree is given in [6] for point data.
However, since theR+-tree does not have any overlap, and
the gains for the X-tree are obtained by avoiding overlap,
one would not expect the X-tree to be better than theR+-
tree for point data.
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Figure 2. Screening points for join test

Similarity Join The join algorithm usingR-tree consid-
ers each leafnode, extends its MBR with�-distance, and
finds all leaf nodes whose MBR intersects with this ex-
tended MBR. The algorithm then performs a nested-loop
join or sort-merge join for the points in those leaf nodes, the
join condition being that the distance between the points is
at most�. (For the sort-merge join, the points are first sorted
on one of the dimensions.)

To reduce redundant comparisons between points when
joining two leaf nodes, we could firstscreenpoints. The
boundary ofeach leafnode is extended by�, and only points
that lie within the intersection of the two extended regions
need be joined. Figure 2 shows an example, where the
rectangles with solid lines represent the MBRs of two leaf
nodes and the dotted lines illustrate the extended bound-
aries. The shaded area contains screened points.

2.2 Other Index Structures

kdB tree [17] is similar to theR+ tree. The main differ-
ence is that the bounding rectangles cover the entire space,
unlike the MBRs of theR+ tree.

hB-tree [12] is similar to the kdB tree except that bound-
ing rectangles of the children of an internal node are or-
ganized as a K-D tree [5] rather than as a list of MBRs.
(The K-D-tree is a binary tree for multi-dimensional points.
In each level of the K-D-tree, only one dimension, chosen
cyclically, is used to decide the subtree for traversal.) Fur-
ther, the bounding regions may have rectangular holes in

Figure 3. Number of neighboring leaf nodes.

them. This reduces the cost of splitting a node compared to
the kdB tree.

TV-tree [10] uses a variable number of dimensions for
indexing. TV-tree has a design parameter� (“active dimen-
sion”) which is typically a small integer (1 or 2). For any
node, only� dimensions are used to represent bounding re-
gions and to split nodes. For the nodes close to the root, the
first � dimensions are used to define bounding rectangles.
As the tree grows, some nodes may consist of points that all
have the same value on their first, say,k dimensions. Since
the firstk dimensions can no longer distinguish the points in
those nodes, the next� dimensions (after thek dimensions)
are used to store bounding regions and for splitting. This
reduces the storage and traversal cost for internal nodes.

Grid-file [15] partitions the k-dimensional space as a
grid; multiple grid buckets may be placed in a single disk
page. A directory structure keeps track of the mapping from
grid buckets to disk pages. A grid bucket must fit within a
leaf page. If a bucket overflows, the grid is split on one of
the dimensions.

2.3 Problems with Current Indices

The index structures described above suffer from follow-
ing inadequacies for performing similarity joins with high-
dimensional points:

Number of Neighboring Leaf Nodes. The splitting algo-
rithms in the R-tree variants utilize every dimension equally
for splitting in order to minimize the volume of hyper-
rectangles. This causes the number of neighboring leaf
nodes within�-distance of a given leaf node to increase dra-
matically with the number of dimensions. To see why this
happens, assume that a R-tree has partitioned the space so
that there is no “dead region” between bounding rectangles.
Then, with a uniform distribution in a 3-dimensional space,
we may get 8 leaf nodes as shown in Figure 3. Notice that
every leaf node is within�-distance of every other leaf node.
In ann dimensional space, there may be O(2n) leaf nodes
within �-distance of every leaf node. The problem is some-
what mitigated because of the use of MBRs. However, the
number of neighbors within�-distance still increases dra-
matically with the number of dimensions.

This problem also holds for other multi-dimensional
structures, except perhaps the TV-tree. However, the TV-
tree suffers from a different problem – it will only use the



first k dimensions for splitting, and does not consider any
of the others (unless many points have the same value in the
first k dimensions). With enough data points, this leads to
the same problem as for theR-tree, though for the opposite
reason. Since the TV-tree uses only the firstk dimensions
for splitting,each leafnode will have many neighboring leaf
nodes within�-distance.

Note that the problem affects both the CPU and I/O cost.
The CPU cost is affected because of the traversal time as
well as time to screen all the neighboring pages. I/O cost
is affected because we have to access all the neighboring
pages.

Storage Utilization. The kdB tree andR-tree family, in-
cluding the X-tree, represent the bounding regions ofeach
node by rectangles. The bounding rectangles are repre-
sented by “min” and “max” points of the hyper-rectangle.
Thus, the space needed to store the representation of bound-
ing rectangles increases linearly with the number of dimen-
sions. This is not a problem for the hB-tree (which does not
store MBRs), the TV-tree (which only uses a few dimen-
sions at a time), or the grid file.

Traversal Cost. When traversing aR-tree or kdB tree,
we have to examine the bounding regions of children in the
node to determine whether to traverse the subtree. This step
requires checking the ranges of every dimension in the rep-
resentation of bounding rectangles. Thus, the CPU cost of
examining bounding rectangles increases proportionally to
the number of dimensions of data points. This problem is
mitigated for the hB-tree or the TV-tree. This is not a prob-
lem for the grid-file.

Build Time. The set of objects participating in a spatial
join may often be pruned by selection predicates [11] (e.g.
find all similar international funds). In those cases, it may
be faster to perform the non-spatial selection predicate first
(select international funds) and then perform spatial join on
the result. Thus it is sometimes necessary to build a spatial
index on-the-fly. Current indices are designed to be built
once; the cost of building them can be more than the cost of
the join [16].

Skewed Data. Handling skewed data is not a problem for
most current indices except the grid-file. In ak-dimensional
space, a single data page overflow may result in ak� 1

dimensional slice being added to the grid-file directory. If
the grid-file hadn buckets before the split, and the splitting
dimension hadm partitions,n=m new cells are added to the
grid after the split. Thus, the size of the directory structure
can grow rapidly for skewed high-dimensional points.

Summary. Each index has good and bad features for sim-
ilarity join of high-dimensional points. It would be difficult
to design a general-purpose multi-dimensional index which

does not have any of the shortcomings listed above. How-
ever, by designing a special-purpose index, we can attack
these problems. The problem of high-dimensional similar-
ity joins with some distance metric and� parameter has the
following properties:

� The feature vector chosen for similarity comparison
has a high dimension.

� Every dimension of the feature vector is mapped into
numeric value.

� The distance function is computed considering every
dimension of the feature vector.

� The similarity distance limit� is not large since in-
dices are not effective when the selectivity of the sim-
ilarity join is large (i.e. when every point matches
with every other point).

We now describe a new index structure,�-kdB tree,
which is a special-purpose index for this purpose.

3 The �-kdB tree

We introduce the�-kdB tree in Section 3.1 and then dis-
cuss its design rationale in Section 3.2.

3.1 �-kdB tree definition

We first define the�-kdB tree2. We then describe how
to perform similarity joins using the�-kdB tree, first for the
case where the data fits in memory, and then for the case
where it does not.

�-kdB tree We assume, without loss of generality, that the
co-ordinates of the points in each dimension lie between
0 and +1. We start with a single leaf node. For better
space utilization, pointers to the data points are stored in
leaf nodes. Whenever the number of points in a leaf node
exceeds a threshold, the leafnode is split, and converted to
an interior node. If the leaf node was at leveli, theith di-
mension is used for splitting the node. The node is split into
b1=�c parts, such that the width of each new leafnode in
the ith dimension is either� or slightly greater than�. (In
the rest of this section, we assume without loss of generality
that � is an exact divisor of 1.) An example of�-kdB tree
for two dimensional space is shown in Figure 4.

Note that for any interior nodex, the points in a childy
of xwill not join with any points in any of the other children
of x, except for the 2 children adjacent toy. This holds for
any of theLp distance metrics. Thus the same join code can
be used for these metrics, with only the final test between a
pair of points being metric-dependent.

2 It is really a trie, but we call it a tree since it is conceptually similar to
kdB tree.



leaves

root

o

o o

o

o

o

o

o

o

o
oo

o
o

oo oo

leafleafleaf

Figure 4. �-kdB tree

Similarity Join using the �-kdB tree Let x be an internal
node in the�-kdB tree. We use x[i] to denote theith child of
x. Let f be the fanout of the tree. Note thatf = 1=�. Fig-
ure 5 describes the join algorithm. The algorithm initially
calls self-join(root), for the self-join version, or join(root1,
root2), for the non-self-join version. The procedures leaf-
join(x, y) and leaf-self-join(x) perform a sort-merge join on
leaf nodes.

For high-dimensional data, the�-kdB tree will rarely use
all the dimensions for splitting. (For instance, with 10 di-
mensions and a� of 0.1, there would have to be more than
1010 points before all dimensions are used.) Thus we can
usually use one of the free unsplit dimension as a common
“sort dimension”. The points in every leaf node are kept
sorted on this dimension, rather then being sorted repeat-
edly during the join. When joining two leaf nodes, the al-
gorithm does a sort-merge using this dimension.

Memory Management The value of� is often given at
run-time. Thus, since the value of� is a parameter for
building the index, it may not be possible to build a disk-
based version of the index in advance. Instead, we sort the
multi-dimensional points with the first splitting dimension
and keep them as an external file.

We first describe the join algorithm, assuming that main-
memory can hold all points within a2 � � distance on the
first dimension, and then generalize it. The join algorithm
first reads points whose values in the sorted dimension lie
between0 and2��, builds the�-kdB tree for those points in
main memory, and performs the similarity join in memory.
The algorithm then deallocates the space used for the points
whose values in the sorted dimension are between0 and
�, reads points whose values are between2 � � and3 � �,
build the�-kdB tree for these points, and performs the join
procedure again. This procedure is continued until all the
points have been processed. Note that we only read each

procedure join(x, y)
begin

if leaf-node(x)and leaf-node(y)then
leaf-join(x, y);

else if leaf-node(x)then begin
for i = 1 to f do

join(x, y[i]);
end
else if leaf-node(y)then begin

for i = 1 to f do
join(x[i], y);

end
else begin

for i = 1 to f � 1 do begin
join(x[i], y[i]);
join(x[i], y[i+1]);
join(x[i+1], y[i]);

end
join(x[f], y[f]);

end
end

procedure self-join(x)
begin

if leaf-node(x)then
leaf-self-join(x);

else begin
for i = 1 to f�1 do begin

self-join(x[i], x[i]);
join(x[i], x[i+1]);

end
self-join(x[f], x[f]);

end
end

Figure 5. Join algorithm

point off the disk once.
This procedure works because the build time for the�-

kdB tree is extremely small. It can be generalized to the
case where a2 � � chunk of the data does not fit in memory.
The basic idea is to partition the data into�2 chunks using
an additional dimension. Then, the join procedure (i.e read
points into memory, build�-kdB , perform join and so on)
is instead repeated for each4 � �2 chunk of the data using
the additional dimension.

3.2 Design Rationale

Two distinguishing features of�-kdB tree are:

� Biased Splitting: The dimension used in previous
split is selected again for splitting as long as the
length of the dimension in the bounding rectangle of
each resulting leaf node is at least�.



� � Sized Splitting: When we split a node, we split the
node in� sized chunks.

We discuss below how these features help�-kdB tree solve
the problems with current indices outlined in Section 2.

Number of Neighboring Leaf Nodes. Recall that with
current indices, the number of neighboring leaf pages may
increase exponentially with the number of dimensions. The
�-kdB solves this problem because of thebiased splitting.
When the length of the bounding rectangle ofeach leaf
nodes in the split dimension is at least�, at most two neigh-
boring leaf nodes need to be considered for the join test.
However, as the length of the bounding rectangle in the split
dimension becomes less than�, the number of neighbor leaf
nodes for join test increases. Hence we split in one dimen-
sion as long as the length of the bounding rectangle ofeach
resulting children is at least�, and then start splitting in the
next dimension. When a leaf node becomes full, we split
the node into several children,each of size� in the split di-
mension at once, rather than gradually, in order to reduce
the build time.

We have two alternatives for choosing the next splitting
dimension: global ordering and local ordering. Global or-
dering uses the same split dimension for all the nodes in
the same level, while local ordering chooses the split di-
mension based on the distribution of points in eachnode.
Examples of these two cases are shown in Figure 6, for a 3-
dimensional space. For both orderings, the dimensionD0
is used for splitting in the root node (i.e. level 0). For global
ordering, onlyD1 is used for splitting in level 1. However,
for local ordering, bothD1 andD2 are chosen alternatively
for neighboring nodes in level 1. Consider the leaf node la-
beledX. With global ordering, it has 5 neighbor leaf nodes
(shaded in the figure). The number of neighbors increases
to 9 for local ordering. Notice that the space covered by the
neighbors for global order is a proper subset of that covered
by the neighbors for local ordering. The difference in the
space covered by the two orderings increases as� decreases.
Hence we chose global ordering for splitting dimensions,
rather than local ordering.

When the number of points are so huge that the�-kdB
tree is forced to split every dimension, then the number of
neighbors will be comparable to other indices. However, till
that limit, the number of neighbors depends on the number
of points (and their distribution) and�, and is independent
of the number of dimensions.

The order in which dimensions are chosen for splitting
can significantly affect the space utilization and join cost
if correlations exist between some of the dimensions. This
problem can be solved by statistically analyzing a sample of
the data, and choosing for the next split the dimension that
has the least correlation with the dimensions already used
for splitting.

D1

X

D0

D2

(a) Choosing splitting dimension globally

X

(b) Choosing splitting dimension locally

Figure 6. Global and Local Ordering of Split-
ting Dimensions

Space Requirements. For each internalnode, we simply
need an array of pointers to its children. We do not need
to store minimum bounding rectangles because they can be
computed. Hence the space required depends only on the
number of points (and their distribution),and is independent
of the number of dimensions.

Traversal Cost. Since we split nodes in� sized chunks,
traversal cost is extremely small. The join procedure
never has to check bounding rectangles of nodes to decide
whether or not they may contain points within� distance.

Build time. The build time is small because we do not
have complex splitting algorithms, or splits that propagate
upwards.

Skewed data. Since splitting a node does not affect other
nodes, the�-kdB tree will handle skewed data reasonably.

4 Performance Evaluation

We empirically compared the performance of the�-kdB
tree with bothR+ tree and a sort-merge algorithm. The ex-
periments were performed on an IBM RS/6000 250 work-
station with a CPU clock rate of 66 MHz, 128 MB of main



memory, and running AIX 3.2.5. Data was stored on a local
disk, with measured throughput of about 1.5 MB/sec.

We first describe the algorithms compared in Section 4.1,
and the datasets used in experiments in Section 4.2. Next,
we show the performance of the algorithms on synthetic and
real-life datasets in Sections 4.3 and 4.4 respectively.

4.1 Algorithms

�-kdB tree. We implemented the�-kdB tree algorithm de-
scribed in Section 3.1. A leaf node was converted to an in-
ternal node (i.e. split) if its memory usage exceeded4096
bytes. However, if there were no dimensions left for split-
ting, the leaf node was allowed to exceed this limit. The
execution times for the�-kdB tree include the I/O cost of
reading an external sorted file containing the data points, as
well as the cost of building the index. Since the external
file can be generated once and reused for different value of
�, the execution times do not include the time to sort the
external file.

R+ tree. Our experiments indicated that theR+ tree was
faster than theR� tree for similarity joins on a set of high-
dimensional points. (Recall that the difference betweenR+

tree andR? tree is thatR+ tree does not allow overlap be-
tween minimum bounding rectangles. Hence it reduces the
number of overlapping leaf nodes to be considered for the
spatial similarity join, resulting in faster execution time.)
We therefore usedR+ tree for our experiments. We used
a page size of 4096 bytes. In our experiments, we ensured
that theR+ tree always fit in memory and a builtR+ tree
was available in memory before the join execution began.
Thus, the execution time forR+ tree does not include any
build time — it only includes CPU time for main-memory
join. (Although this gives theR+ tree an unfair advantage,
we err on the conservative side.)

2-level Sort-Merge. Consider a simple sort-merge algo-
rithm, which reads the data from a file sorted on one of the
dimensions and performs the join test on all pairs of points
whose values in the sort dimension are closer than�. We
implemented a more sophisticated version of this algorithm,
which reads a2� chunk of the sorted data into memory, fur-
ther sorts in memory this data on a second dimension, and
then performs the join test on pairs of points whose values
in the second sort dimension are close than�. The algo-
rithm then drops the first� chunk from memory and reads
the next� chunk, and so on. The execution times reported
for this algorithm also do not include the external sort time.

Table 1 summarizes the costs included in the execution
times for each algorithm.

4.2 Data Sets and Performance Metrics

Synthetic Datasets. We generated two types of synthetic
datasets: uniform and gaussian. The values in each dimen-

�-kdB R+ tree Sort-Merge
Join Cost Yes Yes Yes
Build Cost Yes No –
Sort Cost (first dim.) No – No

Table 1. Costs included in the execution
times.

Parameter Default Value Range of Values
Number of Points 100,000 10,000 to 1 million
Number of Dimensions 10 4 to 28
� (join distance) 0.1 0.01 to 0.2
Range of Points -1 to +1 -same-
Distance Metric L2-norm L1,L2,L1 norms

Table 2. Synthetic Data Parameters

sion were randomly generated in the range�1:0 to 1:0with
either uniform or gaussian distribution. For the Gaussian
distribution, the mean and the standard deviation were 0
and 0.25 respectively. Table 2 shows the parameters for
the datasets, along with their default values and the range
of values for which we conducted experiments.

Distance Functions We usedL1, L2 andL1 as distance
functions in our experiments. The extended bounding rect-
angles obtained by extending MBRs by� differ slightly in
R+ tree depending on distance functions. Figure 7 shows
the extended bounding regions for theL1, L2 and L1
norms. The rectangles with solid line represents the MBR
of a leaf node and the dashed lines the extended bounding
regions. This difference in the regions covered by the ex-
tended regions may result in a slightly different number of
intersecting leaf nodes for a given a leaf node. However,
in the R-tree family of spatial indices, the selection query
is usually represented by rectangles to reduce the cost of
traversing the index. Thus, the extended bounding rectan-
gles to be used to traverse the index for bothL1 andL2
become the same as that forL1.

4.3 Results on Synthetic Data

Distance Metric. We first experimented varying� for the
L1, L2 andL1 norms. The relative performance of the

(a)L1 (b)L2 (c)L1

Figure 7. Bounding Regions extended by �
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Figure 8. Performance on Synthetic Data: �
Value

algorithms is almost identical for the three distance metrics
(See [20]). We only show the results for theL2-norm in the
remaining experiments.

� value. Figure 8 shows the results of varying� from 0.01
to 0.2, for both uniform and gaussian data distributions.L2
is used as distance metric. We did not explore the behavior
of the algorithms for� greater than 0.2 since the join result
becomes too large to be meaningful. Note that the execution
times are shown on a log scale. The�-kdB tree algorithm
is typically around 2 to 20 times faster than the other algo-
rithms. For low values of� (0.01), the 2-level sort-merge
algorithm is quite effective. In fact, the sort-merge algo-
rithm and the�-kdB algorithm do almost the same actions,
since the�-kdB will only have around 2 levels (excluding
the root). For the gaussian distribution, the performance
gap between the�-kdB tree and theR+ tree narrows for
high values of� because the join result is very large.

Uniform Distribution

10

100

1000

4 8 12 16 20 24 28

E
xe

cu
tio

n 
T

im
e 

(s
ec

.)

Dimension

2-level Sort-merge
R+ tree

e-K-D-B tree

Gaussian Distribution

10

100

1000

10000

4 8 12 16 20 24 28

E
xe

cu
tio

n 
T

im
e 

(s
ec

.)

Dimension

2-level Sort-merge
R+ tree

e-K-D-B tree

Figure 9. Performance on Synthetic Data:
Number of Dimensions

Number of Dimensions. Figure 9 shows the results of in-
creasing the number of dimensions from 4 to 28. Again,
the execution times are shown using a log scale. The�-kdB
algorithm is around 5 to 19 times faster than the sort-merge
algorithm. For 8 dimensions or higher, it is around 3 to 47
times faster than theR+ tree, the performance gap increas-
ing with the number of dimensions. For 4 dimensions, it
is only slightly faster, since there are enough points for the
�-kdB tree to be filled in all dimensions.

For theR+ tree, increasing the number of dimensions
increases the overhead of traversing the index, as well as the
number of neighboring leaf nodes and the cost of screening
them. Hence the time increases dramatically when going
from 4 to 28 dimensions.3 Even the sort-merge algorithm
performs better than theR+ tree at higher dimensions. In

3The dip in theR+ tree execution time when going from 4 to 8 dimen-
sion for the gaussian distribution is because of the decrease in join result
size. This effect is also noticeable for the�-kdB tree, for both distributions.
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Figure 10. Performance on Synthetic Data:
Number of Points

contrast, the execution time for the�-kdB remains roughly
constant as the number of dimensions increases.

Number of Points. To see the scale up of�-kdB tree, we
varied the number of points from 10,000 to 1,000,000. The
results are shown in Figure 10. ForR+ tree, we do not show
results for 1,000,000 points because the tree no longer fit in
main memory. None of the algorithms have linear scale-up;
but the sort-merge algorithms has somewhat worse scaleup
than the other two algorithms. For the gaussian distribution,
the performance advantage of the�-kdB tree compared to
theR+ tree remains fairly constant (as a percentage). For
the uniformdistribution, the relative performance advantage
of the�-kdB tree varies since the average depth of the�-kdB
tree does not increase gradually as the number of points in-
creases. Rather, it jumps suddenly, from around 3 to around
4, etc. These transitions occur between 20,000 and 50,000
points, and between 500,000 and 750,000 points.
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Figure 11. Non-self-joins

Non-self-joins. Figure 11 shows the execution times for
a similarity join between two different datasets (generated
with different random seeds). The size of one of the datasets
was fixed at 100,000 points, and the size of the other dataset
was varied from 100,000 points down to 5,000 points. For
experiments where the second dataset had 10,000 points or
fewer, each experiment was run 5 times with different ran-
dom seeds for the second dataset and the results averaged.
With both datasets at 100,000 points, the performance gap
between theR+ tree and the�-kdB tree is similar to that on
a self-join with 200,000 points. As the size of the second
dataset decreases, the performance gap also decreases. The
reason is that the time to build the index is included for the
�-kdB tree, but not for theR+ tree.

4.4 Experiment with a Real-life Data Set

We experimented with the following real-life dataset.

Similar Time Sequences Consider the problem of find-
ing similar time sequences. The algorithm proposed in [2]



first finds similar “atomic” subsequences, and then stitches
together the atomic subsequence matches to get similar sub-
sequences or similar sequences. Each sequence is broken
into atomic subsequences by using a sliding window of size
w. The atomic subsequences are then mapped to points
in a w-dimensional space. The problem of finding simi-
lar atomic subsequences now corresponds to the problem of
finding pairs ofw-dimensional points within� distance of
each other, using theL1 norm. (See [2] for the rationale
behind this approach.)
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Figure 12. Performance on Mutual Fund Data

The time sequences in our experiment were the daily
closing prices of 795 U.S. mutual funds, from Jan 4, 1993
to March 3, 1995. There were around 400,000 points
for the experiment (since each sequence is broken using
a sliding window). The data was obtained from the MIT
AI Laboratories’ Experimental Stock Market Data Server
(http://www.ai.mit.edu/stocks/mf.html). We varied the win-
dow size (i.e. dimension) from 8 to 16 and� from 0.05
to 0.2. Figure 12 shows the resulting execution times for
the three algorithms. The results are quite similar to those
obtained on the synthetic dataset, with the�-kdB tree out-
performing the other two algorithms.

4.5 Summary

The�-kdB tree was typically 2 to 47 times faster than the
R+ tree on self-joins, with the performance gap increasing
with the number of dimensions. It was typically 2 to 20
times faster than the sort-merge. The 2-level sort-merge was
usually slower thanR+ tree. But for high dimensions (>
15) or low values of� (0.01), it was faster than theR+ tree.

For non-self-joins, the results were similar when the
datasets being joined were not of very different sizes. For
datasets with different sizes (e.g. 1:10 ratio), the�-kdB tree
was still faster than theR+ tree. But the performance gap
narrowed since we include the build time for the�-kdB tree,
but not for theR+ tree.

The distance metric did not significantly affect the re-
sults: the relative performance of the algorithms was almost
identical for theL1, L2 andL1 norms.

5 Conclusions

We presented a new algorithm and an index structure,
called the�-kdB tree, for fast spatial similarity joins on
high-dimensional points. Such similarity joins are needed
in many emerging data mining applications. The new index
structure reduces the number of neighbor leaf nodes that are
considered for the join test, as well as the traversal cost of
finding appropriate branches in the internal nodes. The stor-
age cost for internal nodes is independent of the number of
dimensions. Hence it scales to high-dimensional data.

We studied the performance of�-kdB tree using both
synthetic and real-life datasets. The join time for the�-kdB
tree was 2 to an order of magnitude less than the join time
for theR+ tree on these datasets, with the performance gap
increasing with the number of dimensions. We have also
analyzed the number of join and screen tests for the�-kdB
tree and theR+ tree. The analysis showed that the�-kdB
tree will perform considerably better for high-dimensional
points. This analysis can be found in [20].

Given the popularity of the R-tree family of index struc-
tures, we have also studied how the ideas of the�-kdB tree
can be grafted to the R-tree family. We found that the result-
ing ”biased R-tree” performs much better than the R-tree for
high-dimensional similarity joins, but the�-kdB tree still
did better. The details of this study can be found in [20].
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