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Abstract subsequences, they are considered similar. To find similar
subsequences, each subsequence is mapped to a pointin a
Many emerging data mining applications require a sim- multi-dimensional spce. Typically, the dimensiotity of

ilarity join between points in a high-dimensional domain. this space is quite high. The problem of finding similar sub-
We present a new algorithm that utilizes a new index struc- sequences is now reduced to the problem of finding points
ture, called thes-kdB tree, for fast spatial similarity joins  that are close to the given point in the multi-dimensional
on high-dimensional points. This index structure reduces space. A pair of points are considered “close” if they are
the number of neighboring leaf nodes that are considered within ¢ distance of each other with some distance metric
for the join test, as well as the traversal cost of finding ap- (such asL, or L., norms) that involves all dimensions,
propriate branches in the internal nodes. The storage costwheree is specified by the user. A multi-dimensional in-
for internal nodes is independent of the number of dimen-dex structure (th&™ tree) was used for finding all pairs of
sions. Hence the proposed index structure scales to high-close points.

dimensional data. Empil’ical evaluation, USing Synthetic This approach holds for other domainS, such as image
and real-life datasets, shows that S|m||ar|ty jOin USing the data. In this case, the image is broken into a g”d of sub-

¢-kdB tree is 2 to an order of magnitude faster than®18  jmages, key attributes of each sub-image mapped to a point

tree, with the performance gap increasing with the number in a multi-dimensional sace, and all pair of similar sub-

of dimensions. images are found. If “enough” sub-images of two images
match, a more complex matching algorithm is applied to
the images.

1 Introduction A closely related problem is to find all objects similar to

a given objects. This translates to finding all points close to

Many emerging data mining applications require effi- a query point.
cient processing of similarity joins on high-dimensional Even if there is no direct mapping from an object to a
points.  Examples include applications in time-series point in a multi-dimensional sgee, this paradigm carils
databases[1, 2], multimedia databases [9, 14, 13], medicabe used if a distance function between objects is available.
databases [3, 21], and scientific databases[22]. Some typAn algorithm is presented in [7] for generating a mapping
ical queries in these applications include: (1) discover all from an object to a multi-dimensional point, given a set of
stocks with similar price movements; (2) find all pairs of objects and a distance function.
similar images; (3) retrieve music scores similar to atarget  cyrrent spatial access rheds (see [18, 8] for an
music score. These queries are often a prelude to clustering,verview) have mainly concentrated on storing map infor-
the objects. For example, given all pairs of similar images, mation, which is a 2-dimensional or 3-dimensional space.
the images can be clustered into groups such that the imagegypile they work well with low dimensional data points, the
in each group are similar. . . _ . time and space for these indices grow rapidly with dimen-

To motivate the need for multidimensional indices in sjonality. Moreover, while CPU cost is high for similarity
such applications, consider the problem of finding all pairs joins, existing indices have been designed with the reduc-
of similar time-sequences. The technique in [2] solves this i of 1/O cost as their primary goal. We discuss these

problem by breaking each time-sequences into a set of cOnyints further later in the paper, after reviewing current mul-
tiguous subsequences, and finding all subsequences simijgimensional indices.

lar to each other. If two sequences havadegh” similar To overcome the shortcomings of current indices for

*Currently at Bell Laboratories, Murray Hill, NJ. high-dimensional similarity joins, we propose a structure




called the:-kdB tree. This is a main-memory data structure N1 N2

optimized for performing similarity joins. The-kdB tree P °5

also has a very small build time. This lets th&dB tree ° —

use the similarity distance limitas a parameter in building L1 ° o ’ yillia ‘ ’ L3 L\4‘
the tree. Empirical evaluation shows that the build plus join J 9 L % N ¢ \J
time for thee-kdB tree is typically 3 to 35 times less than the L]
join time for the R tree [19]! with the performance 98P ) Space Covered by Bounding Rectangles (b) R-tree

increasing with the number of dimensions. A pure main-
memory data structure would not be very useful, since the Figure 1. Example of an R-tree
data in many applications will not fit in memory. We extend
the join algorithm to handle large amount of data while still

using thes-kdB tree. 2.1 TheR-tree family
Problem Definition We will consider two versions of the R-tree [8] is a balanced tree in which eaciode repre-
spatial similarity join problem: sents a rectangular region. Each internal node Rytaee

stores aminimum bounding rectangle (MBR)r each of

its children. The MBR covers the space of the points in the
child node. The MBRs of siblings can overlap. The decision
whether to traverse a subtree in an internal node depends on

e Self-join: Given a set ofV high-dimensional points
and a distance metric, find all pairs of points that are
within e distance of each other.

o Non-self-join: Given two setsS; and S, of high- whether its MBR overlaps with the space covered by query.
dimensional points and a distance metric, find pairs YWhen a node becomes full, itis split. Total area of the two
of points, one each frorf; andS,, that are withire MBRs resulting from the splitis minimized while splitting a
distance of each other. node. Figure 1 shows an exampleitree. This tree con-
] ) ) . . . sists of 4 leaf nodes and 3 internal nodes. The MBRs are
The distance metric for two dimensional point' and} N1,N2,L1,L2,L3 and L4. The root node has two children
that we consider is whose MBRs are N1 and N2.
. 1/p R* trehe [4]hadded two mjljor enhancements to R-tree.
B » First, rather than just considering the area, the node split-
Ly = (21: | Xi — Yi| ) » 1<p<oo ting heuristic inR* tree also minimizes the perimeter and

overlap of the bounding regions. Secorf®; tree intro-
duced the notion dibrced reinserto make the shape of the
tree less dependent on the order of the insertion. When a
node becomes full, it is not split immediately, but a portion
of the node is reinserted from the top level. With these two

o ] ) ) enhancements, thie* tree generally outperformig-tree.
Paper Organization. In Section 2, we give an overview R* tree [19] imposes the constraint that no two bound-

of existing spatial indices, and describe their shortcomingsing regions of a non-leaf node overlap. Thus, except for the

When.used for high-dimensional similarity joins. Septiqn 3 boundary sudces, there will be only one path to every leaf
plescnbes the-kdB tree and the algor'|thn.1 for S|m|lar|ty region, which can reduce search and join costs.
joins. We' give a performance evaluation in Section 4 and X-tree [6] avoids splits that could resultin high degree of
conclude in Section 5. overlap of bounding regions f&*-tree. Their experiments
show that the overlap of bounding regions increases signif-
2 Current Multidimensional Index Struc- icantly for high dimensional data resulting in performance
tures deterioration in theR*-tree. Instead of allowing splits that
produce high degree of overlaps, the nodes in X-tree are
extended to more than the usual block size, resulting in
We first discuss the R-tree family of indices, which are so called super-nodes. Experiments show that X-tree im-
the most popular multi-dimensional indices, and describe proves the performance of point query and nearest-neighbor
how to use them for similarity joins. We also give a brief query compared t&*-tree and TV-tree (described below).
overview of other indices. We then discuss inadequacies ofNo comparison withR*-tree is given in [6] for point data.
the current index structures. However, since th&*-tree does not have any overlap, and
the gains for the X-tree are obtained by avoiding overlap,

L Our experiments indicated that ths" tree was better than t tree one would not expect the X-tree to be better thanfte
[8] or the R* tree [4] tree for high-dimensional similarity joins. tree for point data

L, is the familiar Euclidean distancé; the Manhattan dis-
tance, and.., corresponds to the maximum distance in any
dimension.
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Figure 3. Number of neighboring leaf nodes.

them. This reduces the cost of splitting a nhode compared to
the kdB tree.
TV-tree [10] uses a variable number of dimensions for
— | | indexing. TV-tree has a design parametgf‘active dimen-
L1 e sion”) which is typically a small integer (1 or 2). For any
e node, onlya dimensions are used to represent bounding re-
gions and to split nodes. For the nodes close to the root, the
first o dimensions are used to define bounding rectangles.
| | As the tree grows, some nodes may consist of points that all
R ‘ have the same value on their first, saylimensions. Since
the firstk dimensions can no longer distinguish the pointsin
those nodes, the nextdimensions (after the dimensions)
are used to store bounding regions and for splitting. This
Figure 2. Screening points for join test reduces the storage and traversal cost for internal nodes.
Grid-file [15] partitions the k-dimensional space as a
grid; multiple grid buckets may be gted in a single disk
Similarity Join  The join algorithm usingR-tree consid-  page. A directory structure keeps track of the mapping from
ers each leahode, extends its MBR witk-distance, and  grid buckets to disk pages. A grid bucket must fit within a
finds all leaf nodes whose MBR intersects with this ex- leaf page. If a bucket overflows, the grid is split on one of
tended MBR. The algorithm then performs a nested-loop the dimensions.
join or sort-merge join for the pointsin those leaf nodes, the
join condition being that the distance between the pointsis2.3 Problems with Current Indices
at most. (For the sort-merge join, the points are first sorted
on one of the dimensions.) The index structures described above suffer from follow-
To reduce redundant comparisons between points whering inadequacies for performing similarity joins with high-
joining two leaf nodes, we could firsicreenpoints. The  dimensional points:
boundary okach leahode is extended by and only points . . -
that lie within the intersection of the two extended regions Numbgr of Ne|ghbor|ng Leaf l\!qdes. The.spllttlr}g algo-
need be joined. Figure 2 shows an example, where thenthms!n.the'R-tree vanantg gt|l!ze every dimension equally
rectangles with solid lines represent the MBRs of two leaf for splitting in order to minimize the volume of hyper-

nodes and the dotted lines illustrate the extended bound_rectanglgs.' Th's causes the number of ne!ghborlng leaf
aries. The shaded area contains screened points, nodes withire-distance of a given leaf node to increase dra-

matically with the number of dimensions. To see why this
happens, assume that a R-tree has partitioned the space so
that there is no “dead region” between bounding rectangles.
Then, with a uniform distribution in a 3-dimensional space,
kdB tree [17] is similar to theR™ tree. The main differ-  we may get 8 leaf nodes as shown in Figure 3. Notice that
ence is that the bounding rectangles cover the enteieesp  every leaf node is withie-distance of every other leaf node.
unlike the MBRs of theR™ tree. In ann dimensional space, there may be2t)(leaf nodes
hB-tree [12] is similar to the kdB tree except that bound- within e-distance of every leaf node. The problem is some-
ing rectangles of the children of an internal node are or- what mitigated bcause of the use of MBRs. However, the
ganized as a K-D tree [5] rather than as a list of MBRs. number of neighbors withia-distance still increases dra-
(The K-D-tree is a binary tree for multi-dimensional points. matically with the number of dimensions.
In each level of the K-D-tree, only one dimension, chosen  This problem also holds for other multi-dimensional
cyclically, is used to decide the subtree for traversal.) Fur- structures, except perhaps the TV-tree. However, the TV-
ther, the bounding regions may have rectangular holes intree suffers from a different problem — it will only use the

(b) Non-overlapping MBRsR* tree)

2.2 Other Index Structures



first £ dimensions for splitting, and does not consider any does not have any of the shortcomings listed above. How-
of the others (unless many points have the same value in theaver, by designing a special-purpose index, we can attack
first £ dimensions). With enough data points, this leads to these problems. The problem of high-dimensional similar-
the same problem as for ttietree, though for the opposite ity joins with some distance metric amgparameter has the
reason. Since the TV-tree uses only the firgtimensions  following properties:
for splitting,each leahode will have many neighboring leaf e The feature vector chosen for similarity comparison
nodes withire-distance. has a high dimension.

Note that the problem affects both the CPU and I/O cost. : . . )
The CPU cost is affected because of the traversal time as ® Every dimension of the feature vector is mapped into

well as time to screen all the neighboring pages. 1/0 cost numeric value.

is affected because we have to access all thghieiring e The distance function is computed considering every
pages. dimension of the feature vector.

Storage Utilization. The kdB tree andk-tree family, in- e The similarity distance limit is not large since in-
cluding the X-tree, represent the bounding regionsaufh dices are not effective when the selectivity of the sim-
node by rectangles. The bounding rectangles are repre- ilarity join is large (i.e. when every point matches
sented by “min” and “max” points of the hyper-rectangle. with every other point).

Thus, the space needed to store the representation of bound- \We now describe a new index structurekdB tree,
ing rectangles increases Iinearly with the number of dimen-which is a Specia|-purpose index for this purpose.

sions. This is not a problem for the hB-tree (which does not
store MBRs), the TV-tree (which only uses a few dimen-

sions at a time), or the grid file. 3 Thee-kdBtree

Traversal Cost. When traversing aR-tree or kdB tree, We introduce the-kdB tree in Section 3.1 and then dis-
we have to examine the bounding regions of children in the cuss its design rationale in Section 3.2.

node to determine whether to traverse the subtree. This step

requires checking the ranges of every dimensioninthe rep-3 1 ._kdB tree definition

resentation of bounding rectangles. Thus, the CPU cost of

examining bounding rectangles increases proportionally to
the number of dimensions of data points. This problem is
mitigated for the hB-tree or the TV-tree. This is not a prob-
lem for the grid-file.

We first define the-kdB treé. We then describe how
to perform similarity joins using the-kdB tree, first for the
case where the data fits in memory, and then for the case
where it does not.

Build Time. The set of objects participating in a spatial ) )
join may often be pruned by selection predicates [11] (e.g. €<dB tree  We assume, withoutloss of generality, that the
find all similar international funds). In those cases, it may o-ordinates of the points in each dimension lie between
be faster to perform the non-spatial selection predicate first® @nd +1. We start with a single leaf node. For better
(select international funds) and then perform spatial join on SPace utilization, pointers to the data points are stored in
the result. Thus it is sometimes necessary to build a spatial€a Nodes. Whenever the number of points in a leaf node
index on-the-fly. Current indices are designed to be built €Xc€€ds a threshold, the leagde is split, and converted to
once; the cost of building them can be more than the cost ofa" interior node. If the leaf node was at levethesth di-
the join [16]. mension is used for splitting t'he node. The node is Sp!lt into
|1/€] parts, such that the width of each new |eafde in
Skewed Data. Handling skewed data is not a problem for theith dimension is eithet or slightly greater tham. (In
most current indices except the grid-file. lh-@limensional  the rest of this section, we assume withoutloss of generality
space, a single data page overflow may result in-al thate is an exact divisor of 1.) An example efkdB tree
dimensional slice being added to the grid-file directory. If for two dimensional space is shown in Figure 4.
the grid-file had» buckets before the split, and the splitting Note that for any interior node, the points in a child
dimension haan partitions;/m new cells are added to the  of z will not join with any points in any of the other children
grid after the split. Thus, the size of the directory structure of z, except for the 2 children adjacentgo This holds for
can grow rapidly for skewed high-dimensional points. any of theL,, distance metrics. Thus the same join code can
be used for these metrics, with only the final test between a
Summary. Each index has good and bad features for sim- pair of points being metric-dependent.
ilarity join of high-dimensional points. It would be difficult 2|t is really a trie, but we call it a tree since it is conceptually similar to
to design a general-purpose multi-dimensional index which kdB tree.




root

procedure join(x, y)
begin
if leaf-node(x)and leaf-node(yxhen
leaf-join(x, y);
else if leaf-node(x}then begin
for i=1to fdo
""""""" join(x, y[il);
end
else if leaf-node(ythen begin
for i=1to fdo

leaf join(x[il, y);
end
else begin
Fd ] X| [0 for i=1to f—1do begin
leaves join(x[il, y[il);
join(x[il, y[i+1]);
Figure 4. e-kdB tree join(x[i+1], y[il);
end
join(x[f], yIf]);
Similarity Join using the ¢-kdB tree  Let = be an internal end

node in the:-kdB tree. We use x] to denote théth child of end
z. Let f be the fanout of the tree. Note thAt= 1/¢. Fig-
ure 5 describes the join algorithm. The algorithm initially
calls self-join(root), for t'hg self-jgin version, or join(root1, it leaf-node(xYhen
root2), for the non-self-join version. The procedures leaf- leaf-self-join(x):
join(x, y) and leaf-self-join(x) perform a sort-merge join on else begin

procedure self-join(x)
begin

leaf nodes. for i=1to f—1do begin
For high-dimensional data, tlekdB tree will rarely use self-join(x[i], x[i]);

all the dimensions for splitting. (For instance, with 10 di- join(xi], x[i+1]);

mensions and a of 0.1, there would have to be more than end

10° points before all dimensions are used.) Thus we can self-join(x[f], x[f]);

usually use one of the free unsplit dimension as a common end

“sort dimension”. The points in every leaf node are kept "

sorted on this dimension, rather then being sorted repeat-

edly during the join. When joining two leaf nodes, the al- Figure 5. Join algorithm
gorithm does a sort-merge using this dimension.

Memory Management The value ofe is often given at  ngint off the disk once.

run-time. Thus, since the value efis a parameter for This procedure works because the build time for ¢he
building the index, it may not be possible to build a disk- k4B tree is extremely small. It can be generalized to the
based version of the index in advance. Instead, we sort the;ase where @ + ¢ chunk of the data does not fit in memory.
multi-dimensional points with the first splitting dimension The pasic idea is to partition the data irfochunks using
and keep them as an external file. an additional dimension. Then, the join procedure (i.e read
We first describe the join algorithm, assuming that main- points into memory, build-kdB , perform join and so on)

memory can hold all points within 2« ¢ distance on the s instead repeated for eadhk 2 chunk of the data using
first dimension, and then generalize it. The join algorithm he additional dimension.

first reads points whose values in the sorted dimension lie
betweer) and2 x ¢, builds the:-kdB tree for those points in
main memory, and performs the similarity join in memory.
The algorithmthen deallocates the space used for the points
whose values in the sorted dimension are betweamd

3.2 Design Rationale

Two distinguishing features @tkdB tree are:

¢, reads points whose values are betw2ene and3 x ¢, e Biased Splitting The dimension used in previous
build thee-kdB tree for these points, and performs the join split is selected again for splitting as long as the
procedure again. This procedure is continued until all the length of the dimension in the bounding rectangle of

points have been processed. Note that we only read each each reslting leaf node is at least



e ¢ Sized Splitting When we split a node, we split the 7

node ine sized chunks. E

We discuss below how these features hekalB tree solve -D2
the problems with current indices outlined in Section 2.

Number of Neighboring Leaf Nodes. Recall that with
current indices, the number of neighboring leaf pages may
increase exponentially with the number of dimensions. The
e-kdB solves this problem because of thi@sed splitting
When the length of the bounding rectangle ezfch leaf
nodes in the split dimension is at leasat most two neigh-
boring leaf nodes need to be considered for the join test.
However, as the length of the bounding rectangle in the split E
dimension becomes less thgrthe number of neighbor leaf -

nodes for join test increases. Hence we split in one dimen-
sion as long as the length of the bounding rectangksch
resulting children is at least and then start splitting in the
next dimension. When a leaf node becomes full, we split
the node into several childreaach of size in the split di-
mension at once, rather than gradually, in order to reduce
the build time.

We have two alternatives for choosing the next splitting
dimension: global ordering and local ordering. Global or-
dering uses the same split dimension for all the nodes in  Figure 6. Global and Local Ordering of Split-
the same level, while local ordering chooses the split di- ting Dimensions
mension based on the distribution of points in eaddle.

Examples of these two cases are shown in Figure 6, for a 3-

dimensional space. For both orderings, the dimen$ion

is used for splitting in the root node (i.e. level 0). For global
ordering, onlyD1 is used for splitting in level 1. However,
for local ordering, botlD1 and D2 are chosen alternatively

b1
(a) Choosing siiiting dimension globally

B4

v

(b) Choosing slitting dimension locally

Space Requirements. For each internatode, we simply
need an array of pointers to its children. We do not need
to store minimum bounding rectanglesdause they can be
computed. Hence the space required depends only on the

for neighboring nodes in level 1. Consider the leaf node la- . A .
beledX . With global ordering, it has 5 neighbor leaf nodes number of points (gnd th§|rd|str|but|on), and s independent
of the number of dimensions.

(shaded in the figure). The number of neighbors increases

to 9 for local ordering. Notice that the space covered by theTraversaI Cost. Since we split nodes in sized chunks
neighborg for global order is a proper subsgt of that C,OverEdtraversal cost is extremely small. The join procedure
by the neighbors for local ordering. The difference in the o\ er has to check bounding rectangles of nodes to decide
space covered by the two orderings increasesiasreases. whether or not they may contain points withidistance.
Hence we chose global ordering for splitting dimensions,
rather than local ordering. Build time. The build time is small because we do not

When the number of points are so huge thatdtkelB have complex splitting algorithms, or splits that propagate
tree is forced to split every dimension, then the number of ypwards.

neighbors will be comparable to other indices. However, till
that limit, the number of neighbors depends on the numberSkewed data. Since splitting a node does not affect other
of points (and their distribution) ang and is independent nodes, the-kdB tree will handle skewed data reasonably.
of the number of dimensions.

The order in which dimensions are chosen for splitting 4 performance Evaluation
can significantly affect the space utilization and join cost
if correlations exist between some of the dimensions. This
problem can be solved by statistically analyzing a sample of . ;
the data, and choosing for the next split the dimension that{ree with bothk+ tree and a sort-merge algorithm. The ex-

has the least correlation with the dimensions already useoperi'ment.s were performed on an IBM RS/6000 250 wqu-
for splitting. station with a CPU clock rate of 66 MHz, 128 MB of main

We empirically compared the performance of thiedB



memory, and running AlX 3.2.5. Data was stored on a local «kdB | R” tree | Sort-Merge

disk, with measured throughput of about 1.5 MB/sec. Join Cost Yes Yes Yes
We first describe the algorithms compared in Section 4.1, | BuildCost Yes No -

and the datasets used in experiments in Section 4.2. Next, SortCost(firstdim.)] No - No

we show the performance of the algorithms on synthetic and

real-life datasets in Sections 4.3 and 4.4 respectively.

Table 1. Costs included in the execution

times.

4.1 Algorithms
e-kdB trge. Wg: implemented the-kdB tree algorithm de- . [Parameter Defaul Value | Range of Values
scribed in Section 3.1. A leaf node was converted to an in- _ .

. g Number of Points 100,000 10,000 to 1 million
ternal node (i.e. split) if its memory usagecerded4096 Number of Dimensiond 10 41028
bytes. However, if there were no dimensions left for split- | _ (join distance) 0.1 0.01t00.2
ting, the leaf node was allowed toe@ed this limit. The Range of Points 1to+1 -same-
execution times for the-kdB tree include the 1/O cost of Distance Metric Lo-norm L1, Ly, Lo, NnOrms
reading an external sorted file containing the data points, as
well as the cost of building the index. Since the external
file can be generated once and reused for different value of Table 2. Synthetic Data Parameters
¢, the execution times do not include the time to sort the
external file.

sion were randomly generated in the rarge0 to 1.0 with
RT tree. Our experiments indicated that tf tree was  either uniform or gaussian distribution. For the Gaussian
faster than theR* tree for similarity joins on a set of high-  distribution, the mean and the standard deviation were 0
dimensional points. (Recall that the difference betwgén and 0.25 respectively. Table 2 shows the parameters for
tree andR* tree is thatR* tree does not allow overlap be- the datasets, along with their default values and the range
tween minimum bounding rectangles. Hence it reduces theof values for which we conducted experiments.

number of overlapping leaf nodes to be considered for the ) i
spatial similarity join, resulting in faster execution time.) Distance Functions We usedLi, L, and L, as distance

We therefore used®™ tree for our experiments. We used functions in our experiments. The extended bounding rect-

a page size of 4096 bytes. In our experiments, we ensuredingles obtained'by extending MBRs byjiffer .slightly in
that theR+ tree always fit in memory and a buitt tree R™T tree depending on distance functions. Figure 7 shows

was available in memory before the join execution began. the extended bounding regions for tiig, L, and Le,
Thus, the execution time fok™* tree does not include any  NOrMSs. The rectangles with solid line represents the MBR
build time — it only includes CPU time for main-memory of a leaf node and the dashed lines the extended bounding

join. (Although this gives th&* tree an unfair advantage, '€9ions. This difference in the regions covered by the ex-
We err on the conservative side.) Fended regions may result in a.sllghtly different number of
intersecting leaf nodes for a given a leaf node. However,

2-level Sort-Merge. Consider a simple sort-merge algo- in the R-tree family of spatial indices, the selection query

rithm, which reads the data from a file sorted on one of the is usually represented by rectangles to reduce the cost of

dimensions and performs the join test on all pairs of points traversing the index. Thus, the extended bounding rectan-

whose values in the sort dimension are closer thakive gles to be used to traverse the index for béthand L,

implemented a more sophisticated version of this algorithm, become the same as that .

which reads &¢ chunk of the sorted data into memory, fur-

ther sorts in memory this data on a second dimension, and4, 3 Results on Synthetic Data

then performs the join test on pairs of points whose values

in the second sort dimension are close thariThe algo-  Distance Metric. We first experimented varyingfor the

rithm then drops the first chunk from memory and reads L1, L2 and L, norms. The relative performance of the

the nexte chunk, and so on. The execution times reported

for this algorithm also do not include the external sort time.
Table 1 summarizes the costs included in the execution

times for each algorithm.

4.2 Data Sets and Performance Metrics @ L (b) Lo ©) Lo

Synthetic Datasets. We generated two types of synthetic . _ _
datasets: uniform and gaussian. The values in each dimen- ~ Figure 7. Bounding Regions extended by ¢
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algorithms is almost identical for the three distance metrics Number of Dimensions. Figure 9 shows the results of in-

(See [20]). We only show the results for thg-norm in the creasing the number of dimensions from 4 to 28. Again,

remaining experiments. the execution times are shown using a log scale. éfkeB
algorithmis around 5 to 19 times faster than the sort-merge
algorithm. For 8 dimensions or higher, it is around 3 to 47

evalue. Figure 8 shows the results of varyinrom 0.01 4,04 faster than th&™ tree, the performance gap increas-
to 0.2, for both uniform and gaussian data distributidis. ing with the number of dimensions. For 4 dimensions, it

is used as distance metric. We did not explore the behaviorig o\ slightly faster, since there are enough points for the
of the algorithms foe greater than 0.2 since the join result

) " ¢-kdB tree to be filled in all dimensions.
o e i o et o the” ee,nreasing te rumr of dimenson
is typically around 2 to 20 times faster than the other algo- increases the'overhv'ead of traversing the index, as well as.the
rithms. For low values o (0.01), the 2-level sort-merge number of nelghbor|ng [eaf nodes and thg cost of screening
: o them. Hence the time increases dramatically when going

glgorithm Is quite effectiye. In fact, the sort-merge glgo- from 4 to 28 dimension3. Even the sort-merge algorithm
”.thm and thef'kd.B algorithm do almost the same actlpns, performs better than thB™ tree at higher dimensions. In
since thee-kdB will only have around 2 levels (excluding

the roof). For the gaussian dIStrIbuilon, the performance 3The dip in theR™ tree execution time when going from 4 to 8 dimen-
gap between the-kdB tree and ther .tree narrows for  gjon for the gaussian distribution is because of the decrease in join result
high values ot because the join result is very large. size. This effect is also noticeable for thdB tree, for both distributions.
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Figure 10. Performance on Synthetic Data: Figure 11. Non-self-joins

Number of Points

Non-self-joins. Figure 11 shows the execution times for

a similarity join between two different datasets (generated
contrast, the execution time for thekdB remains roughly ~ with differentrandom seeds). The size of one of the datasets
constant as the number of dimensions increases. was fixed at 100,000 points, and the size of the other dataset

was varied from 100,000 points down to 5,000 points. For

, experiments where the second dataset had 10,000 points or

Number of Points. To see the scale up etkdB tree, we  foyer each experiment was run 5 times with different ran-
varied the number of points from 10,000 to 1,000,000. The 4,y seeds for the second dataset and the results averaged.

results are shown in Figure 10. FBI tree, we donot Show  \yih oth datasets at 100,000 points, the performance gap
results for 1,000,000 pointebause the tree nonger fitin - papyeen ther* tree and the-kdB tree is similar to that on

main memory. None of the algorithms have linear scale-up; 5 et join with 200,000 points. As the size of the second
but the sort-merge algorithms has somewhat worse scaleUpjgiaset decreases, the performance gap also decreases. The

than the other two algorithms. For the gaussian distribution, .o ason is that the time to build the index is included for the
the performance advantage of thé&dB tree compared t0 | 4B tree. but not for th&™ tree.

the R tree remains fairly constant (as a percentage). For

the uniform distribut'ion, Fhe relative performance advantage 4 »4 Experiment with a Real-life Data Set
of thee-kdB tree varies since the average depth oktkdB

tree does not increase gradually as the number of points in-
creases. Rather, it jumps suddenly, from around 3 to around
4, etc. These transitions occur between 20,000 and 50,00@imilar Time Sequences Consider the problem of find-
points, and between 500,000 and 750,000 points. ing similar time sequences. The algorithm proposed in [2]

We experimented with the following real-life dataset.



first finds similar “atomic” subsequences, and then stitches

4.5 Summary

together the atomic subsequence matches to get similar sub-
sequences or similar sequences. Each sequence is broken Thee-kdB tree was typically 2 to 47 times faster than the

into atomic subsequences by using a sliding window of size

R tree on self-joins, with the performance gap increasing

w. The atomic subsequences are then mapped to pointsvith the number of dimensions. It was typically 2 to 20

in a w-dimensional space. The problem of finding simi-

times faster than the sort-merge. The 2-level sort-merge was

lar atomic subsequences now corresponds to the problem ofisually slower tharR* tree. But for high dimensions(

finding pairs ofw-dimensional points withire distance of
each other, using thé,, norm. (See [2] for the rationale
behind this approach.)

10000

2-level Sort-merge ——
R+ tree —+—
e-K-D-B tree =
[} L
£ 1000
[
c
K]
5
(5]
&
] 100 ¢
10 L L L
0.01 0.05 0.1 0.15 0.2
Epsilon
[}
£
[
c
=) 100
>
(5]
Q -
L .
w -

10

12 14
Dimension

10 16

Figure 12. Performance on Mutual Fund Data

The time sequences in our experiment were the daily
closing prices of 795 U.S. mutual funds, from Jan 4, 1993
to March 3, 1995. There were around 400,000 points

15) or low values of (0.01), it was faster than th* tree.

For non-self-joins, the results were similar when the
datasets being joined were not of very different sizes. For
datasets with different sizes (e.g. 1:10 ratio), ¢HelB tree
was still faster than th&* tree. But the performance gap
narrowed since we include the build time for #hkdB tree,
but not for theR™ tree.

The distance metric did not significantly affect the re-
sults: the relative performance of the algorithms was almost
identical for theL,, L, and L., norms.

5 Conclusions

We presented a new algorithm and an index structure,
called thee-kdB tree, for fast spatial similarity joins on
high-dimensional points. Such similarity joins are needed
in many emerging data mining applications. The new index
structure reduces the number of neighbor leaf nodes that are
considered for the join test, as well as the traversal cost of
finding appropriate branches in the internal nodes. The stor-
age cost for internal nodes is independent of the number of
dimensions. Hence it scales to high-dimensional data.

We studied the performance efkdB tree using both
synthetic and real-life datasets. The join time for ¢HelB
tree was 2 to an order of magnitude less than the join time
for the Rt tree on these datasets, with the performance gap
increasing with the number of dimensions. We have also
analyzed the number of join and screen tests fortkdB
tree and theR™ tree. The analysis showed that #h&dB
tree will perform considerably better for high-dimensional
points. This analysis can be found in [20].

Given the popularity of the R-tree family of index struc-
tures, we have also studied how the ideas ofethdB tree
can be grafted to the R-tree family. We found that the result-
ing "biased R-tree” performs much better than the R-tree for
high-dimensional similarity joins, but thekdB tree still
did better. The details of this study can be found in [20].

for the experiment (since each sequence is broken using
a sliding window). The data was obtained from the MIT References

Al Laboratories’ Experimental Stock Market Data Server
(http://www.ai.mit.edu/stocks/mf.html). We varied the win-
dow size (i.e. dimension) from 8 to 16 amdfrom 0.05

to 0.2. Figure 12 shows the resulting execution times for
the three algorithms. The results are quite similar to those
obtained on the synthetic dataset, with thledB tree out-
performing the other two algorithms.
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