
Mining Process Models from Work
ow Logs

Rakesh Agrawal1 and Dimitrios Gunopulos2 and Frank Leymann3

1 IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120, USA,
ragrawal@almaden.ibm.com

2 IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120, USA,
gunopulo@almaden.ibm.com

3 IBM German Software Development Lab, Hanns-Klemm-Str 45, D-71034
B�oblingen, Germany, ley@sdfvm1.ibm.com

Abstract. Modern enterprises increasingly use the work
ow paradigm
to prescribe how business processes should be performed. Processes are
typically modeled as annotated activity graphs. We present an approach
for a system that constructs process models from logs of past, unstruc-
tured executions of the given process. The graph so produced conforms
to the dependencies and past executions present in the log. By providing
models that capture the previous executions of the process, this technique
allows easier introduction of a work
ow system and evaluation and evo-
lution of existing process models. We also present results from applying
the algorithm to synthetic data sets as well as process logs obtained from
an IBM Flowmark installation.

1 Introduction

Organizations typically prescribe how business processes have to be performed,
particularly when activities are complex and involve many people. A business

process speci�es the way in which the resources of an enterprise are used. The
performance of an enterprise depends on the quality and the accuracy of the
business process. Thus techniques to manage and support business processes are
an active research area. [RW92] [DS93] [GHS95] [LA92] [MAGK95].

In particular, a signi�cant amount of research has been done in the area of
modeling and supporting the execution of business processes. The model gener-
ally used is the work
ow model [Hol94]. Work
ow systems assume that a process
can be divided in small, unitary actions, called activities. To perform the process,
one must perform the set (or perhaps a subset) of the activities that comprise
it. In addition, there may be dependencies between di�erent activities.

The main approach used in work
ow systems is to model the process as a
directed graph. The graph vertices represent individual activities and the edges
represent dependencies between them. In other words, if activity A has to be
executed before activityB, an edge appears in the graph fromA toB. In practice,
certain executions of the process may include a given activity and others may
not. Each edge A ! B is, therefore, annotated with a Boolean function that
determines whether the control
ows from A to B.

Current work
ow systems assume that a model of the process is available and
the main task of the system is to insure that all the activities are performed in

the right order and the process terminates successfully [GR97] [LA92]. The user
is required to provide the process model. Constructing the desired process model
from an unstructured model of process execution is quite di�cult, expensive and
in most cases require the use of an expert [CCPP96] [Sch93].

Contribution We present a new approach to address the problem of model con-
struction. We describe an algorithm that, given a log of unstructured execu-
tions of a process, generates a graph model of the process. The resulting graph
represents the control
ow of the business process and satis�es the following
desiderata:

{ Completeness: The graph should preserve all the dependencies between ac-
tivities that are present in the log. It should also permit all the executions
of the process present in the log.

{ Irredundancy : The graph should not introduce spurious dependencies be-
tween activities.

{ Minimality : To clarify the presentation, the graph should have the minimal
number of edges.

The work we present has been done in the context of the IBM work
ow prod-
uct, Flowmark [LA92]. However, the process model we consider is quite general
and the algorithms we propose are applicable to other work
ow systems. The
new capability we are proposing can be applied in several ways. A technique
that takes logs of existing process executions and �nds a model that captures
the process can ease the introduction of a work
ow management system. In an
enterprise with an installed work
ow system, it can help in the evaluation of
the work
ow system by comparing the synthesized process graphs with pur-
ported graphs. It can also allow the evolution of the current process model into
future versions of the model by incorporating feedback from successful process
executions.

The following schema is being adopted in Flowmark for capturing the logs of
existing processes in an enterprise that does not yet have an work
ow system in
place. First, all the activities in a process are identi�ed. But since the control
ow
is not yet known, all possible activities are presented to the user for consideration
through a graphical interface. The user selects the activities that, according to
user's informal model of the business process, have to be executed next. Thus
the successful executions of the process are recorded.

Related research The speci�cation of dependencies between events has received
much attention [Kle91] [ASE+96]. Our dependency model is a simpli�cation of
that proposed in [Kle91], and is consistent with the directed graph process model.

In previous work in process discovery [CW95] [CW96], the �nite state ma-
chine model has been used to represent the process. Our process model is dif-
ferent from the �nite state machine model. Consider a simple process graph:
(fS;A;B;Eg, fS ! A, A ! E, S ! B, B ! Eg), in which two activities A
and B can proceed in parallel starting from an initiating activity S and followed
by a terminating activity E. This process graph can generate SABE and SBAE

as valid executions. The automaton that accepts these two strings is a quite dif-
ferent structure. In an automaton, the activities (input tokens) are represented
by the edges (transitions between states), while in a process graph the edges
only represent control conditions and vertices represent activities. An activity
appears only once in a process graph as a vertex label, whereas the same token
(activity) may appear multiple times in an automaton.

The problem considered in this paper generalizes the problem of mining se-
quential patterns [AS95] [MTV95], but it is applicable in a more restricted set-
ting. Sequential patterns allow only a total ordering of fully parallel subsets,
whereas process graphs are richer structures: they can be used to model any
partial ordering of the activities and admit cycles in the general setting. On the
other hand, we assume that the activities form only one graph structure, whereas
in the sequential patterns problem the goal is to discover all patterns that occur
frequently.

Organization of the paper The rest of the paper is organized as follows. In Section
2 we describe the process model used in the paper. In Section 3 we present
an algorithm to �nd a process graph, assuming that the graph is acyclic and
that each activity appears exactly once in each execution. The algorithm �nds
the minimal such graph in one pass over the log. In Section 4 we extend this
algorithm to handle the case where some activities may not appear in each
execution. In Section 5 we consider the case of general directed graphs admitting
cycles. In these sections, we make the assumption that the log contains correct
executions of the business process. However, this may not be the case in practice,
and we outline a strategy to deal with this problem in Section 6. Section 7
presents implementation results using both synthetic datasets and logs from a
Flowmark installation. We conclude with a summary in Section 8.

2 Process model

Business processes consist of separate activities. An activity is an action that is
a semantical unit at some level. In addition, each activity can be thought of as a
function that modi�es the state of the process. Business processes are modeled
as graphs with individual activities as nodes.

The edges on the graph represent the potential
ow of control from one
activity to another4. Each edge is associated with a Boolean function (on the
state of the process), which determines whether the edge will be followed or not.
If a vertex (activity) has more than one outgoing edge, the respective Boolean
functions are independent from each other.

De�nition1 (Business process). A business process P is de�ned as a set of
activities VP = V1; : : : ; Vn, a directed graph GP = (VP ; EP), an output function
oP : VP !N k, and 8(u; v) 2 EP a Boolean function f(u;v) : N k ! f0; 1g.

We will assume that GP has a single source and a single sink. These are
the process' activating and terminating activities. If there are no such activities,

4 For the purposes of this paper, we will not di�erentiate between control
ow and
data
ow, a distinction made in some systems [GR97] [LA92].

A

B

DC

E

Fig. 1. Example 1

one can add an activating node with edges to the �rst executed activities in
the graph, and a terminating node with edges from the terminating activities of
the process. The execution of the business process follows the activity graph: for
each activity u that terminates, the output o(u) is computed. Then the functions
on the outgoing edges are evaluated on the output. If f(u;v)(o(u)) is true, then
we test if v can be executed. This test in general is a logical expression involving
the activities that point to v in G. When v is ready, the outputs of incoming
activities are passed as input to v, and it is inserted into a queue to be executed
by the next available agent.

Example 1. Figure 1 gives the graph GP of a process P . The process consists
of �ve activities VP = fA;B;C;D;Eg. A is the starting activity and E is the
terminating activity. The edges of the graph GP (EP = f(A;B), (A;C), (B;E),
(C;D), (C;E), (D;E)g represent the
ow of execution, so that D always follows
C, but B and C can happen in parallel. Not shown in Figure 1 are oP and the
Boolean conditions on the edges. Each activity has a set of output parameters
that are passed along the edges, o(A); : : : ; o(E) 2 N 2. The output parameters
are represented as a vector (o(A)[1]; o(A)[2]). Each edge has a Boolean function
on the parameters, such as: f(C;D) = (o(C)[1] > 0) ^ (o(C)[2] < o(C)[1])). For
example an execution of this process will include activity D if f(A;C) and f(C;D)

are true.

Each execution of a process is a list of events that record when each activity
was started and when it terminated. We can therefore consider the log as a set
of separate executions of an unknown underlying process graph.

De�nition2 (Execution log). The log of one execution of a process (or sim-
ply execution) is a list of event records (P;A;E; T;O) where P is the name of
the process execution, A is the name of the activity, E 2 fSTART, ENDg is the
type of the event, T is the time the event occured, and O = o(A) is the output
of the activity if E = END and a null vector otherwise.

For notational simplicity, we will not write the process execution name and
output in the event records. We assume that the activities are instantaneous and
no two activities start at the same time. With this simpli�cation, we can rep-
resent an execution as a list of activities. This simpli�cation is justi�ed because
if there are two activities in the log that overlap in time, then they must be
independent activities. As we will see, the main challenge in inducing a process
graph from a log of past executions lies in identifying dependency relationship
between activities.

Example 2. Sample executions of the graph in Figure 1 are ABCE, ACDBE,
ACDE.

If there exists a dependency between two activities in the real process, then
these two activities will appear in the same order in each execution. However
only the executions that are recorded in the log are known, and so we de�ne a
dependency between two activities with respect to the log. In the model graph,
each dependency is represented either as a direct edge or as a path of edges from
an activity to another.

De�nition3 (Following). Given a log of executions of the same process, ac-
tivity B follows activity A if either activity B starts after A terminates in each
execution they both appear, or there exists an activity C such that C follows A
and B follows C.

De�nition4 (Dependence between activities). Given a log of executions
of the same process, if activity B follows A but A does not follow B, then B
depends on A. If A follows B and B follows A, or A does not follow B and B
does not follow A, then A and B are independent.

Example 3. Consider the following log of executions of some process: fABCE,
ACDE, ADBEg. The activity B follows A (because B starts after A in the two
executions both of them appear) but A does not follow B, therefore B depends
on A. On the other hand, B follows D (because it is recorded after D in the only
execution that both are present) and D follows B (because it follows C, which
follows B), therefore B and D are independent.

Let us add ADCE to the above log. Now,B andD are no longer independent;
rather, B depends on D. It is because B follows D as before, but C and D are
now independent, so we do not have D following B via C.

Given a log of executions, we can de�ne the concept of a dependency graph,
that is, a graph that represents all the dependencies found in the log.

De�nition5 (Dependency graph). Given a set of activities V and a log of
executions L of the same process, a directed graph GV L is a dependency graph if
there exists a path from activity u to activity v in GVL if and only if v depends
on u.

In general, for a given log, the dependency graph is not unique. In particular,
two graphs with the same transitive closure represent the same dependencies.

Every execution of the process recorded in the log may not include all the
activities of the process graph. This can happen when not all edges outgoing
from an activity are taken (e.g. the execution ACE in Figure 2). An execu-
tion R induces a subgraph G0 of the process graph G = (V;E) in a natural
way: G0 = (V 0; E0), where V 0 = fv 2 V j v appears in Rg and E0 = f(v; u) 2
E j v terminates before u starts in Rg.

A

B

A

B

E

D

C

E

D

C

Fig. 2. Example 5

De�nition6 (Consistency of an execution). Given a process model graph
G = (V;E) of a process P and an execution R, R is consistent with G if the
activities in R are a subset V 0 of the activities in G, and the induced subgraph
G0 = (V 0; f(u; v) 2 E j u; v 2 V 0g) is connected, the �rst and last activities in
R are process' initiating and terminating activities respectively, all nodes in V 0

can be reached from the initiating activity, and no dependency in the graph is
violated by the ordering of the activities in R.

This de�nition of consistency is equivalent to the following one: R can be a
successful execution of P for suitably chosen activity outputs and Boolean edge
functions.

Example 4. The execution ACBE is consistent with the graph in Figure 1, but
ADBE is not.

Given a log of executions, we want to �nd a process model graph that pre-
serves all the dependencies present in the log. At the same time, we do not want
the graph to introduce spurious dependencies. The graph must also be consistent
with all executions in the log. A graph that satis�es these conditions is called a
conformal graph.

De�nition7 (Conformal graph). A process model graph G is conformalwith
a log L of executions if all of the following hold:

{ Dependency completeness: For each dependency in L, there exists a path in
G.

{ Irredundancy of dependencies: There is no path in G between independent
activities in L.

{ Execution completeness: G is consistent with every execution in L.

Example 5. Consider the log fADCE, ABCDEg. Both the graphs in Figure 2
are dependency graphs. The �rst graph is conformal, but the second is not
because it does not allow the execution ADCE.

Problem statement. We de�ne the following two problems:

Problem 1: Graph mining. Given a log of executions of the same process, �nd a
conformal process graph.

Problem 2: Conditions mining. Given a log of executions of the same process and
a corresponding conformal process graph G = (V;E), �nd the Boolean functions
f(u;v); (u; v) 2 E.

In this paper we will only consider Problem 1. Problem 2 is the subject
of ongoing research; some preliminary ideas can be found in [AGL97]. Assume
throughout that the process graph has jV j = n vertices, and the log contains m
separate executions of the process. Generally, m� n.

In Sections 3 and 4, we will assume that the process graph is acyclic. This
assumption is reasonable in many cases and, in fact, it is also frequently the
case in practice [LA92]. We will relax this assumption in Section 5 and allow for
cycles in the process graph.

3 Finding directed acyclic graphs

We �rst consider the special case of �nding model graphs for acyclic processes
whose executions contain exactly one instance of every activity. For this special
case, we can obtain a faster algorithm and prove the following minimality result:

Given a log of executions of the same process, such that each activity appears
exactly once in each execution, there exists a unique process model graph that
is conformal and minimizes the number of edges.

Lemma1. Given a log of executions of the same process, such that each activity

appears in each execution exactly once, if B depends on A then B starts after A
terminates in every execution in the log.

Proof. Assume that this is not the case. Then there exists an execution such
that B starts before A terminates. From the de�nition of dependency, there
must be a path of followings from A to B. But since all activities are present in
each execution, there must be at least one following which does not hold for the
execution where B starts before A, a contradiction. 2

Lemma2. Let G and G0 be graphs with the same transitive closure. Then both

graphs are consistent with the same set of executions if each activity appears

exactly once in each execution.

Proof. Since every activity appears in each execution, the induced subgraph for
any execution is the original graph. The two graphs have the same transitive
closure, so if there is a path between two activities in one, then there is a path
between the same activities in the other. It follows that if a dependency is vio-
lated in one graph, then it must be violated in the other one. 2

Lemma3. Given a log of executions of the same process, where all activities

appear in each execution once, and a dependency graph G for this log, G is

conformal.

A

B

DC

E EA

B

DC

Fig. 3. Example 6

Proof. By de�nition, the dependency graph preserves all the dependencies present
in the log, and none other. For a given execution in the log, the induced subgraph
is again the graph G because all activities are present. Further, no dependency is
violated because if one was, it would not be in the dependency graph. It follows
that G is conformal. 2

We can now give an algorithm that �nds the minimal conformal graph.

Algorithm1 (Special DAG). Given a log L ofm executions of a process, �nd
the minimal conformal graph G, assuming there are no cycles in the graph and
each activity appears in each execution of the process.

1. Start with the graph G = (V;E), with V being the set of activities of the
process and E = ;. (V is instantiated as the log is scanned in the next step.)

2. For each process execution in L, and for each pair of activities u; v such that
u terminates before v starts, add the edge (u; v) to E.

3. Remove from E the edges that appear in both directions.
4. Compute the transitive reduction5 of G.
5. Return (V;E).

Theorem1. Given a log of m executions of a given process having n activities,

Algorithm 1 computes the minimal conformal graph in O(n2m) time.

Proof. First we show that after step 3, G is a dependency graph. From Lemma
1 we know that the graph after step 2 at least contains an edge corresponding
to every dependency. Since the edges we remove in step 3 form cycles of length
2, where there are activities u and v such that u follows v and v follows u, such
edges cannot be dependencies.

After step 4, G is the minimal graph with the same transitive closure and,
using Lemma 2, the minimal dependency graph.

Lemma 3 shows that this graph is also conformal and, since a conformal
graph has to be a dependency graph, it is the minimal conformal graph.

Since m � n, the second step clearly dominates the running time. The
running time of step 4 is O(jV jjEj) = O(n3) [AGU72]. 2

5 The transitive reduction of a directed graph G is the smallest subgraph of G that
has the same closure as G [AGU72]. A DAG has a unique transitive reduction.

Example 6. Consider the log fABCDE, ACDBE, ACBDEg. After step 3 of
the algorithm, we obtain the �rst graph of Figure 3 (the dashed edges are the
edges that are removed at step 3), from which the next underlying process model
graph is obtained with the transitive reduction (step 4).

4 The complete algorithm

We now consider the general case where every execution of an acyclic process
does not necessarily include all the activities. The problem is that all dependency
graphs are no longer conformal graphs: it is possible to have a dependency graph
that does not allow some execution present in the log (Example 5).

The algorithmwe give that solves this problem is a modi�cation of Algorithm
1. It makes two passes over the log and uses a heuristic to minimize the number
of the edges.

First it computes a dependency graph. As before, we identify those activities
which ought to be treated as independent because they appear in reverse order
in two separate executions. In addition, to guard against spurious dependencies,
we also identify those activity pairs A,B that have a path of followings from A to
B as well as from B to A, and hence are independent. To �nd such independent
activities we �nd the strongly connected components in the graph of followings.
For two activities in the same strongly connected component, there exist paths
of followings from the one to the other; consequently, edges between activities
in the same strongly connected component are removed.

We must also ensure that the dependency graph is such that it allows all
executions present in the log. Having formed a dependency graph as above, we
remove all edges that are not required for the execution of the activities in the
log. An edge can be removed only if all the executions are consistent with the
remaining graph. To derive a fast algorithm, we use the following alternative: for
each execution, we identify a minimal set of edges that are required to keep the
graph consistent with the execution, and include them in the �nal graph. Note
that we can no longer guarantee that we have obtained a minimal conformal
graph. We can now state our algorithm.

Algorithm2 (General DAG). Given a log L of m executions of a process,
�nd the dependency graph G, assuming there are no cycles in the process graph.

1. Start with the graph G = (V;E), with V being the set of activities of the
process and E = ;. (V is instantiated as the log is scanned in the next step.)

2. For each process execution in L, and for each pair of activities u; v such that
u terminates before v starts, add the edge (u; v) to E.

3. Remove from E the edges that appear in both directions.
4. For each strongly connected component of G, remove from E all edges be-

tween vertices in the same strongly connected component.
5. For each process execution in L:

(a) Find the induced subgraph of G.
(b) Compute the transitive reduction of the subgraph.

E

A F

CB

D

E

A F

CB

D

E

A F

CB

D

Fig. 4. Example 7

(c) Mark those edges in E that are present in the transitive reduction.
6. Remove the unmarked edges in E.
7. Return (V;E).

Theorem2. Given a log of m executions of a given process having n activities,

Algorithm 2 computes a conformal graph in O(mn3) time.

Proof. After step 3, we are left with a directed graph where each edge path
represents a following in L. Step 4 �nds cycles in this graph and the set of
vertices in each cycle represent independent activities by de�nition. We thus
have a dependency graph for L after step 4. This graph maintains execution
completeness as step 2 created a graph that at least allows every execution in
L and steps 3-4 do not exclude any of them. Steps 5-6 retain only those edges
from this graph that are necessary for at least one execution in L.

The running time is dominated by step 5 (m � n), whose asymptotic time
complexity is O(mn3). 2

Example 7. Consider the log fABCF;ACDF;ADEF;AECFg. After step 2 of
Algorithm 2, the graph G is the �rst graph in Figure 4. Step 3 does not �nd
any cycle of length 2. There is one strongly connected component, consisting of
vertices C;D;E. After step 4, G is the second graph in Figure 4. Some of the
edges are removed in step 6, resulting in the last graph in Figure 4.

5 Finding general directed graphs

If the process model graph can have cycles, the previous algorithms break down.
The main problem is that we are going to remove legitimate cycles along with
cycles created because two activities are independent and have appeared in dif-
ferent order in di�erent executions. An additional problem is that in the case of
a directed graph with cycles the transitive reduction operation does not have a
unique solution.

A modi�cation of our original approach works however. The main idea is to
treat di�erent appearances of the same activity in an execution as two distinct
activities.

A cycle in the graph will result in multiple appearances of the same activity
in a single process execution. We use labeling to arti�cially di�erentiate the
di�erent appearances: for example the �rst appearance of activity A is labeled

A1, the second A2, and so on. Then Algorithm 2 is used on the new execution
log.

The graph so computed contains, for each activity, an equivalent set of ver-
tices that correspond to this activity. In fact, the size of the set is equal to the
maximum number that the given activity is present in an execution log.

The �nal step is to merge the vertices of each equivalent set into one vertex.
In doing so, we put an edge in the new graph if there exists an edge between
two vertices of di�erent equivalent sets of the original graph. The algorithm is
given in detail in [AGL97].

6 Noise

A problem we have to consider is noise in the log. This problem can arise because
erroneous activities were inserted in the log, or some activities that were executed
were not logged, or some activities were reported in out of order time sequence.

We make a slight modi�cation of Algorithm 2 to deal with these kinds of
noise. The main change is in step 2 where we add a counter for each edge in E
to register how many times this edge appears. Then, we remove all edges with
a count below a given threshold T . The rationale is that errors in the logging
of activities will happen infrequently. On the other hand, if two activities are
independent, then their order of execution is unlikely to be the same in all
executions.

One problem here is determining a good value for T . A few extra erroneous
executions may change the graph substantially, as the following example illus-
trates.

Example 8. Assume that the process graph is a chain with vertices A;B;C;D;E.
Then there is only one correct execution, namely ABCDE. Assume that the
log contains m � k correct executions, and k incorrect executions of the form
ADCBE. If the value of T is set lower than k, then Algorithm 2 will conclude
that activities B;C; and D are independent.

Let us assume that activities that must happen in sequence are reported out
of sequence with an error rate of �. We assume that � < 1=2. Then, given m
executions, the expected number of out of order sequences for a given pair of
activities is �m. Clearly T must be larger than �m. The probability that there
are at least T errors, assuming they happen at random, is [CLR90]:

P [more than T errors in m executions] =
TX
i=1

�
m
i

�
�i(1 � �)n�i �

�
m
T

�
�T

The use of T implies that if two independent activities have been executed in
a given order at least m�T times, a dependency between them will be added. We
assume that activities that are independent in the process graph are executed in
random order. Then the probability that they were executed in the same order
in at least m � T executions is

P [more than m � T executions in same order] �

�
m

m � T

�
(1=2)(m�T)

JA BC

D

E

FG

H

I

Fig. 5. A synthetic process model graph (Graph10) with 10 activities. Typical execu-
tions are ADBEJ , AGHEJ , ADGHBEJ , AGCFIBEJ .

Then with probability � � 1 � max

��
m
T

�
�T ;

�
m

m � T

�
(1=2)(m�T)

�
,

Algorithm 2 �nds the correct dependency.
Note that, if T increases, the probability of wrongly reporting an edge de-

creases, but the probability of adding an edge increases. If � is approximately

known, then we can set

�
m
T

�
�T =

�
m

m � T

�
(1=2)(m�T), and from there we

get �T = (1=2)(m�T), and we can obtain the value of T that minimizes the
probability that an error occurs.

7 Implementation results

In this section, we present results of applying our algorithm to synthetic datasets
as well as logs obtained from a Flowmark installation. Both the synthetic data
and the Flowmark logs are lists of event records consisting of the process name,
the activity name, the event type, and the timestamp. The experiments were
run on a RS/6000 250 workstation.

7.1 Synthetic datasets

To generate a synthetic dataset, we start with a random directed acyclic graph,
and using this as a process model graph, log a set of process executions. The
order of the activity executions follows the graph dependencies. The START
activity is executed �rst and then all the activities that can be reached directly
with one edge are inserted in a list. The next activity to be executed is selected
from this list in random order. Once an activity A is logged, it is removed from
the list, along with any activity B in the list such that there exists a (B;A)
dependency. At the same time A's descendents are added to the list. When the
END activity is selected, the process terminates. In this way, not all activities
are present in all executions.

Figure 5 gives an example of a random graph of 10 activities (referred to as
Graph10) that was used in the experiments. The same graph was generated by
Algorithm 2, with 100 random executions consistent with Graph10.

Table 1 summarizes the execution times of the algorithm for graphs of varying
number of vertices and with logs having varying number of executions. The
physical size of the log was roughly proportional to the number of recorded
executions (all executions are not of equal length). For 10,000 executions, the
size of the log was 46MB, 62MB, 85MB and 107MB for graphs with 10, 25, 50
and 100 vertices respectively.

Number of Number of vertices
executions 10 25 50 100

100 4.6 6.5 9.9 15.9
1000 46.6 64.6 100.4 153.2
10000 393.3 570.6 879.7 1385.1

Table 1. Execution times in seconds (synthetic datasets)

For practical graph sizes, the number of executions in the input is the domi-
nant factor in determining the running time of the algorithm. Table 1 shows that
the algorithm is fast and scales linearly with the size of the input for a given
graph size. It also scales well with the size of the graph in the range size that we
ran experiments.

Number of vertices 10 25 50 100
Edges Present 24 224 1058 4569

Edges found 100 24 172 791 1638
with 1000 24 224 1053 3712

executions 10000 24 224 1076 4301

Table 2. Number of edges in synthesized and original graphs (synthetic datasets)

Table 2 presents the size of the graphs that our algorithm discovered for each
of the experiment reported in Table 1. The graphs our algorithm derived in these
experiments were good approximations of the original graphs (checked by pro-
grammatically comparing the edge-set of the two graphs). When a graph has a
large number of vertices, the log must correspondingly contain a large number
of executions to capture the structure of the graph. Therefore, the largest graph
was not fully found even with a log of 10000 executions. When the number of
vertices was small, the original graphs were recovered even with a small num-
ber of executions. In the case of 50 vertices, the algorithm eventually found a
supergraph of the original graph. As we noted earlier, in the case when every
execution of a process does not contain all the activities, the conformal graph
for a given log is not unique. We use heuristics to minimize the number of edges
in the graph we �nd.

7.2 Flowmark datasets

For a sanity check, we also experimented with a set of logs from a Flowmark
installation. Currently, Flowmark does not log the input and output parameters

to the activities. Hence, we could not learn conditions on the edges. The correct-
ness of the the process model graphs mined was veri�ed with the user. In every
case, our algorithm was able to recover the underlying process.

Table 3 sumarizes the characteristics of the datasets and the execution times
([AGL97] includes the graphs).

Process Number of Number of Number of Size of Execution time
Name vertices edges executions the log (seconds)

Upload and Notify 7 7 134 792KB 11.5

StressSleep 14 23 160 3685KB 111.7
Pend Block 6 7 121 505KB 6.3
Local Swap 12 11 24 463KB 5.7

UWI Pilot 7 7 134 779KB 11.8

Table 3. Experiments with Flowmark datasets

8 Summary

We presented a novel aproach to expand the utility of current work
ow systems.
The technique allows the user to use existing execution logs to model a given
business process as a graph. Since this modeling technique is compatible with
work
ow systems, the algorithm's use can facilitate the introduction of such
systems.

In modeling the process as a graph, we generalize the problem of mining
sequential patterns [AS95] [MTV95]. The algorithm is still practical, however,
because it computes a single graph that conforms with all process executions.

The algorithm has been implemented and tested with both real and synthetic
data. The implementation uses Flowmark's model and log conventions [LA92].
The results obtained from these experiments validated the scalability and us-
ability of the proposed algorithm.

An important and interesting problem for future work is learning the control
conditions. The control conditions can be arbitrary Boolean functions of some
global process state. To obtain useful information about these functions, addi-
tional information about the changes in the global state of the process must be
present in the log. One possible approach, discussed in [AGL97], is to make the
simplifying assumption that the control conditions are simple Boolean functions
of the output of the activity. We can now use a classi�er [WK91] to learn the
Boolean fuctions.

References

[AGL97] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Mod-
els from Work
ow Logs. Research Report RJ 10100 (91916),
IBM Almaden Research Center, San Jose, California (available from
http://www.almaden.ibm.com/cs/quest), December 1997.

[AGU72] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a
directed graph. SIAM Journal of Computing, 1(2), 1972.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns.
In Proc. of the 11th Int'l Conference on Data Engineering, Taipei, Taiwan,
March 1995.

[ASE+96] P. Attie, M. Singh, E.A. Emerson, A. Sheth, and M. Rusinkiewicz.
Scheduling work
ows by enforcing intertask dependencies. Distributed Sys-
tems Engineering Journal, 3(4):222{238, December 1996.

[CCPP96] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Work
ow evolution. In Pro-

ceedings of ER '96, Springer Verlag, Cottbus, Germany, October 1996.
[CLR90] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT

Press, 1990.
[CW95] Jonathan E. Cook and Alexander L. Wolf. Automating process discovery

through event-data analysis. In Proc. 17th ICSE, Seattle, Washington,
USA, April 1995.

[CW96] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software
processes from event-based data. Research Report Technical Report CU-
CS-819-96, Computer Science Dept., Univ. of Colorado, 1996.

[DS93] U. Dayal and M.-C. Shan. Issues in operation
ow management for long-
running acivities. Data Engineering Bulletin, 16(2):41{44, 1993.

[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of work
ow
management: From process modeling to work
ow automation infrastruc-
ture. Distributed and Parallel Databases, 3(2), 1995.

[GR97] D. Georgakopoulos and Marek Rusinkiewicz. Work
ow management |
from business process automation to inter-organizational collaboration. In
VLDB-97 Tutorial, Athens, Greece, August 1997.

[Hol94] D. Hollinsworth. Work
ow reference model. Technical report, Work
ow
Management Coalition, TC00-1003, December 1994.

[Kle91] J. Klein. Advanced rule driven transaction management. In IEEE COM-

PCON, 1991.
[LA92] F. Leymann and W. Altenhuber. Managing business processes as an infor-

mation resource. IBM Systems Journal, (2), 1992.
[MAGK95] C. Mohan, G. Alonso, R. Gunthor, and M. Kanath. Exotica: A research

perspective on work
ow management systems. Data Engineering, 18(1),
March 1995.

[MTV95] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovering fre-
quent episodes in sequences. In Proc. of the 1st Int'l Conference on Knowl-

edge Discovery in Databases and Data Mining, Montreal, Canada, August
1995.

[RW92] B. Reinwald and H. Wedekind. Automation of control and data
ow in
distributed application systems. In DEXA, pages 475{481, 1992.

[Sch93] A. L. Scherr. A new approach to business processes. IBM Systems Journal,
32(1), 1993.

[WK91] Sholom M. Weiss and Casimir A. Kulikowski. Computer Systems that

Learn: Classi�cation and Prediction Methods from Statistics, Neural Nets,

Machine Learning, and Expert Systems. Morgan Kaufman, 1991.

This article was processed using the LATEX macro package with LLNCS style

