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ABSTRACT:Analysts predominantly use OLAP data cubes to identify regions of anoma-
lies that may represent problem areas or new opportunities. The current OLAP systems
support hypothesis-driven exploration of data cubes through operations such as drill-down,
roll-up, and selection. Using these operations, an analyst navigates unaided through a
huge search space looking at large number of values to spot exceptions. We propose a
new discovery-driven exploration paradigm that mines the data for such exceptions and
summarizes the exceptions at appropriate levels in advance. It then uses these exceptions
to lead the analyst to interesting regions of the cube during navigation. We present the
statistical foundation underlying our approach. We then discuss the computational issue of
�nding exceptions in data and making the process e�cient on large multidimensional data
bases. We present performance results and experience with real-life datasets to illustrate
the e�ectiveness of the proposed paradigm.



1. Introduction

On-Line Analytical Processing (OLAP) characterizes the operations of summarizing,
consolidating, viewing, applying formulae to, and synthesizing data along multiple dimen-
sions. OLAP software helps analysts and managers gain insight into the performance of
an enterprise through a wide variety of views of data organized to re
ect the multidimen-
sional nature of enterprise data [Col95]. An increasingly popular data model for OLAP
applications is the multidimensional database [OLA96][AGS97], also known as the data
cube [GBLP96]. A data cube consists of two kinds of attributes: measures and dimen-

sions. The set of dimensions consists of attributes like product names and store names
that together form a key. The measures are typically numeric attributes like sales volumes
and pro�t. Dimensions usually have associated with them hierarchies that specify aggrega-
tion levels. For instance, store name ! city ! state is a hierarchy on the store dimension
and UPC code! type ! category is a hierarchy on the product dimension.

Hypothesis-driven Exploration. A business analyst while interactively exploring the
OLAP data cube is often looking for regions of anomalies. These anomalies may lead to
identi�cation of problem areas or new opportunities. The exploration typically starts at the
highest level of hierarchies of the cube dimension. Further, navigation of the cube is done
using a sequence of \drill-down" (zooming in to more detailed levels of hierarchies), \roll-
up" (zooming out to less detailed levels) and \selection" (choosing a subset of dimension
members) operations. From the highest level of the hierarchy, the analyst drills-down to
the lower levels of hierarchies by looking at the aggregated values and visually identifying
interesting values to follow. Thus, drilling-down the product dimension from product
category to product type may lead to product types whose sale exhibited some anomalous
behavior. A further drill down may lead to individual product UPC codes causing this
anomaly. If an exploration along a path does not lead to interesting results, the analyst
rolls-up the path and starts pursuing another branch. A roll-up may lead to the top-level
of hierarchy and then further drill-down may continue along another dimension.

This \hypothesis-driven" exploration for anomalies has several shortcomings. The
search space is very large | typically, a cube has 5{8 dimensions, each dimension has
a hierarchy that is 2{8 levels deep and each level of the hierarchy has ten to hundreds of
members [Col95]. Simply looking at data aggregated at various levels of details to hunt
down an anomaly that could be one of several million values hidden in detailed data is a
daunting task. Furthermore, the higher level aggregations from where an analyst starts
may not even be a�ected by an anomaly occuring underneath either because of cancellation
of multiple exceptions or because of the large amount of data aggregated. Even if one is
viewing data at the same level of detail as where the anomaly occurs, it might be hard to
notice the exception because of large number of values.

Discovery-driven Exploration. We propose a new \discovery-driven" method of data
exploration where an analyst's search for anomalies is guided by precomputed indicators
of exceptions at various levels of detail in the cube. This increases the chances of user
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noticing abnormal patterns in the data at any level of aggregation. This paradigm could
be especially valuable when the number of dimensions and hierarchies is large, making it
overwhelming for the user to navigate through the multitudes of views of a data cube.

We present a formal notion of exceptions. Intuitively, we consider a value in a cell of a
data cube to be an exception if it is signi�cantly di�erent from the value anticipated based
on a statistical model. This model computes the anticipated value of a cell in context
of its position in the data cube and combines trends along di�erent dimensions that the
cell belongs to. Thus, for instance, a large increase in sales in december might appear
exceptional when looking at the time dimension but when looking at the other dimensions
like product this increase will not appear exceptional if other products also had similar
increase. The model allows exceptions to be found at all levels of aggregation.

We present computation techniques that make the process of �nding exceptions e�cient
for large OLAP datasets. Our techniques use the same kind of data scan operations as
required for cube aggregate computation [AAD+96] and thus enables overlap of exception
�nding with routine aggregate precomputation. These techniques recognize that the data
may be too large to �t in main memory and intermediate results may have to be written to
disk requiring careful optimization. We describe some experience of using this methodology
on a real data set and give performance results.

Paper layout. The paper is organized as follows. In Section 2 we demonstrate a scenario
of the use of our proposed method. Section 3 gives the statistical model we use to compute
the anticipated value of a cell and the rationale for choosing this model. Computation
techniques are discussed in Section 4. We conclude with a summary and directions for
future work in Section 5.

2. An Illustrative Example

We illustrate our proposed method using an example session with our prototype im-
plementation. This prototype uses the Microsoft Excel spreadsheet, extended with appro-
priate macros, as the front-end for user-interaction. The backend is the well-known OLAP
product, Arbor Essbase [Arb] that computes and stores the exceptions using the techniques
we present in Sections 3 and 4.

To keep the example brief, we will consider a three-dimensional data cube with di-
mensions Product, Market, and Time. There is a hierarchy Market ! Region ! ALL on
the Market dimension. The data for this cube is taken from a sample OLAP database
distributed with Essbase [Arb].

We annotate every cell in all possible aggregations of a data cube with a value that
indicates the degree of \surprise" that the quantity in the cell holds. The surprise value
captures how anomalous a quantity in a cell is with respect to other cells. The surprise
value of a cell is a composite of the following three values (we give de�nitions and discuss
how these values are determined in Section 3):

1. SelfExp: represents the surprise value of the cell relative to other cells at the same

2



Product (All)
Region (All)

Sum of Sales Month
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Total 2% 0% 2% 2% 4% 3% 0% -8% 0% -3% 4%

Figure 1: Change in sales over time

level of aggregation.

2. InExp: represents the degree of surprise somewhere beneath this cell if we drill down
from the cell.

3. PathExp: represents the degree of surprise for each drill-down path from the cell.

Consider a user looking at the monthly sales as a percentage di�erence from the previous
month. Suppose the user starts by viewing the data aggregated over all products and
markets for di�erent months of the year as shown in Figure 1.

To �nd out what parts of the cube may be worthy of exploring further in terms of
exceptions, the user invokes a \highlight exceptions" button that colors the background
of each cell based on its SelfExp value. In addition, each cell is surrounded with a di�erent
colored box based on the InExp value. In both cases, the intensity of the color is varied
with the degree of exception. In Figure 1, the months with a thick box around them have a
high InExp value and thus need to be drilled down further for exceptions underneath them.
Darker boxes (e.g., around \Aug", \Sep" and \Oct") indicate higher values of InExp than
the lighter boxes (e.g., around \Feb" and \Nov").

There are two paths the user may drill down along from here: Product and Region.
To evaluate which of these paths has more exceptions, the user selects a cell of interest
and invokes a \path exception" module that colors each aggregated dimension based on
the surprise value along that path. These are based on the PathExp values of the cell. In
Figure 1 (top-left part) the path along dimension Product has more surprise than along
Region indicated by darker color. Drilling-down along Product yields 143 di�erent sales
values corresponding to di�erent Product-Time combinations as shown in Figure 2. Instead
of trying to �nd the exceptions by manual inspection, the user can click on the \highlight
exception" button to quickly identify the exceptional values. In this �gure, there are a
few cells with high SelfExp values and these appear as cells with a di�erent background
shade than the normal ones (darker shades indicate higher surprise). For instance, sales of
\Birch-B(eer)" shows an exceptional di�erence of 42% in the month of \Oct". In addition,
three other cells are also indicated to have large SelfExp values although the sales values
themselves ( 6% for<Jolt-C, Sep>, -12% for<Birch-B, Jul>and -10% for<Birch-B, Dec>)
are not exceptionally large when compared with all the other cells. The reason why these
cells are marked as exceptions will be explained in Section 3.

Figure 2 also shows some cells with large InExp values as indicated by the thick boxes
around them. The highest InExp values are for Product \Diet-S(oda)" in the months of
\Aug" and \Oct". The user may therefore choose to explore further details for \Diet-
Soda" by drilling down along Region. Figure 3 shows the sales �gures for \Diet-Soda" in
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Region (All)

Avg.Sales Month
Product Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Birch-B 10% -7% 3% -4% 15% -12% -3% 1% 42% -14% -10%
Chery-S 1% 1% 4% 3% 5% 5% -9% -12% 1% -5% 5%
Cola -1% 2% 3% 4% 9% 4% 1% -11% -8% -2% 7%
Cream-S 3% 1% 6% 3% 3% 8% -3% -12% -2% 1% 10%
Diet-B 1% 1% -1% 2% 1% 2% 0% -6% -1% -4% 2%
Diet-C 3% 2% 5% 2% 4% 7% -7% -12% -2% -2% 8%
Diet-S 2% -1% 0% 0% 4% 2% 4% -9% 5% -3% 0%
Grape-S 1% 1% 0% 4% 5% 1% 3% -9% -1% -8% 4%
Jolt-C -1% -4% 2% 2% 0% -4% 2% 6% -2% 0% 0%
Kiwi-S 2% 1% 4% 1% -1% 3% -1% -4% 4% 0% 1%
Old-B 4% -1% 0% 1% 5% 2% 7% -10% 3% -3% 1%
Orang-S 1% 1% 3% 4% 2% 1% -1% -1% -6% -4% 9%
Sasprla -1% 2% 1% 3% -3% 5% -10% -2% -1% 1% 5%

Figure 2: Change in sales over time for each product

Product Diet-S

Avg.Sales Month
Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
C 0% -2% 0% 1% 4% 1% 5% -6% 2% -2% -2%
E 0% 2% -8% 7% 0% 5% -40% 10% -33% 2% 8%
S 0% -1% 3% -2% 2% -2% 19% -1% 12% -1% 0%
W 5% 1% 0% -2% 6% 6% 2% -17% 9% -7% 2%

Figure 3: Change in sales of Product \Diet-Soda" over time in each Region

di�erent Regions. By highlighting exceptions in this plane, the user notices that in Region
\E" (for Eastern), the sales of \Diet-Soda" has decreased by an exceptionally high value
of 40% and 33% in the months of \Aug" and \Oct" respectively. Notice that the sales of
\Diet-Soda" in the Product-Time plane aggregated over di�erent Regions (Figure 2) gives
little indication of these high exceptions in the Region-Product-Time space. This shows
how the InExp value at higher level cells may be valuable in reaching at exceptions in
lower level cells.

There are no other cells with high InExp in Figure 3. Therefore, the user may stop
drilling down and go back to the Product-Time plane of Figure 2 to explore other cells with
high InExp. Suppose, he chooses to drill-down along Product \Cola" in \Aug". Figure 4
shows the exceptions for \Cola" after drilling down along Region. The \Central" Region
has a large InExp and may be drilled down further, revealing the SelfExp values in the
Market-time plane for \Cola". (as shown in Figure 5).
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Market (All)
Product Cola

Avg.Sales Month
Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
C 3% 1% 4% 1% 4% 10% -11% -14% -3% 5% 11%
E -3% 3% 4% 4% 13% 2% 0% -10% -13% -3% 8%
S 2% -1% 1% 9% 6% 3% 21% -15% 1% -5% 4%
W -2% 2% 2% 4% 12% 1% 1% -9% -11% -4% 6%

Figure 4: Change in sales over Time for Product \Cola" in di�erent Region

Product Cola
Region C

Avg.Sales Month
Market Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Colorado 0% 2% -8% 7% 0% 5% -40% 10% -32% 2% 8%
Illinois 3% 4% 24% 2% 3% 19% -18% -17% -5% 12% 30%
Iowa 2% 0% -3% 11% 3% 7% 20% -20% -6% -6% 8%
Missouri 2% -2% -6% -3% -2% 0% -5% -6% 18% 4% -17%
Ohio -9% -5% -12% -4% -10% -9% 0% 26% 0% 7% -11%
Wisconsin 16% 3% 0% -3% 19% 13% 7% -30% 3% -3% 12%

Figure 5: Change in sales over Time for Product \Cola" in the \Central" Region

Product Birch-B
Region E

Sum of Sales Month
State Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Massachusetts 0% -4% 0% -8% 0% -2% 0% 7% 35% -14% -16%
New-Hampshire 5% 10% -13% 17% 3% 14% -27% -17% 57% -11% -41%
New-York 18% -10% 8% -4% 24% -19% -1% 1% 44% -15% -3%

Figure 6: Change in sales over Time for Product \Birch-B"
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3. De�ning exceptions

Intuitively, a value in a cell of a data cube is an exception if it is surprising. There
could be several interpretations of this notion. We present the approach we use. Later in
Section 3.8 we discuss the alternatives we considered before deciding on our approach.

Our choice of exception model was motivated by the following desiderata:

1. We need to consider variation and patterns in the measure value across all dimensions
that a cell belongs to. This helps us �nd values that are exceptional within the context
of a particular aggregation. It is not enough to simply treat the values in a cube as
a 
at set and call extreme values in the set as exceptions. For instance, consider
the example data cube from Figure 2. If we ignored cell positions, possibly only
<Birch-B, Oct> would be marked as an exception. However, we identify several other
exceptions. Interestingly, the entry <Birch-B, Dec> with value -10% is marked as
an exception whereas entry <Birch-B, Nov> with a higher value -14% is not because
for the \Dec" column almost all other product have a large positive value whereas
in the \Nov" column most other products also have a negative value. In the \Sep"
column, \Jolt-C" has a relatively large positive value since most other products have
a negative value and is therefore marked as an exception.

2. We need to �nd exceptions at all aggregated group-bys of the cube, and not only
at the detailed level because it simpli�es end-user comprehensibility through concise
representation. For instance, hBirch-B,Octi is an exception at the hProduct,Monthi
group-by (Figure 2) and that means we do not need to mark as exceptions all the
high values for hBirch-B,Oct, *i at the hProduct,Month,Statei group-by (Figure 6).

3. The user should be able to interpret the reason why certain values are marked as ex-
ceptions. A typical OLAP user is a business executive, not necessarily a sophisticated
statistician. We are targeting our system for this audience. Our method therefore
should not require the user to make choices between complex statistical models and
the process of �nding exceptions should be fairly automated.

4. The procedure for �nding exceptions should be computationally e�cient and scale for
large datasets commonly found in OLAP databases. Also, it should be generalizable
and e�cient for the range of dimensions that are common in OLAP (typically 3 to
8) and handle hierarchies on dimensions.

3.1. The Model

Consider �rst the problem of �nding exceptions in the most detailed values of the data
cube. We call a value an exception if it di�ers signi�cantly from the anticipated value
calculated using a model that takes into account all aggregates (group-bys) in which the
value participates. This model was inspired by the table analysis methods [HMJ88] used
in the statistical literature.
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For a value yi1i2:::in in a cube C at position ir of the rth dimension dr (1 � r � n), we
de�ne the anticipated value ŷi1i2:::in as a function f of contributions from various higher
level group-bys as:

ŷi1i2:::in = f(
G(irjdr2G)jG � fd1; d2; : : :dng) (3.1)

We will refer to the 
 terms as the coe�cients of the model equation. The way these
coe�cients are derived is explained in Section 3.4. The di�erent functional forms function
f can take is discussed in Section 3.3.

We clarify Eq. 3.1 by illustrating for the case of a cube with three dimensions A;B; C.
The anticipated value ŷijk for the ith member of dimension A, jth member of dimension B

and kth member of dimension C, is expressed as a function of seven terms obtained from
each of the seven group-bys of the cube as:

ŷijk = f(
; 
Ai ; 

B
j ; 


C
k ; 


AB
ij ; 
BC

jk ; 
ACik )

The absolute di�erence between the actual value, yi1i2:::in and the anticipated value
ŷi1i2:::in is termed as the residual ri1i2:::in of the model. Thus,

ri1i2:::in = jyi1i2:::in � ŷi1i2:::in j :

Intuitively, any value with a relatively large value of the residual is an exception. A
statistically valid de�nition of \relatively large" requires us to scale the values based also
on the anticipated standard deviation �i1i2:::in associated with the residuals. Thus, we
call a value an exception if the standardized residual, si1i2:::in , de�ned as

si1i2:::in =
jyi1i2:::in � ŷi1i2:::in j

�i1i2:::in
(3.2)

is higher than some threshold � . We use � = 2.5 corresponding to a probability of 99% in
the normal distribution. In Section 3.5 we discuss how we estimate the standard deviations.

3.2. Exceptions at Higher Levels of Group-bys

Exceptions at higher level group-bys of the cube can be found by separately �tting the
model Eq. 3.1 on aggregated values at each group-by of the data cube using di�erent values
of n. For instance, for a cube with three dimensions A, B, C we will need one equation
at the most detailed level ABC where n = 3, three equations for group-bys AB, BC and
CA where n = 2, and three equations for group-bys A, B and C where n = 1. The OLAP
user speci�es the aggregate function to be used for summarizing values at higher levels of
the cube. For instance, a user might specify \sum" or \average" of sales as the aggregate
function. Accordingly, exceptions in \total" or \average" sales will be reported at various
group-bys of the cube.
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3.3. Functional forms of f

The function f in Eq. 3.1 can take a form which is:

� Additive: the function f returns the sum of its arguments.

� Multiplicative: the function f returns the product of its arguments.

Other (more complex) functional forms for f are also possible | most of them involving
di�erent mixtures of additive and multiplicative terms [HMJ88]. A signi�cantly di�erent
approach in this category is the one suggested in [Man71] where factor analytic models
like the singular value decomposition [CL86] are used to �t a model based on a mixture of
additive and multiplicative terms. The main demerit of these models is the high overhead of
computing them and the lack of generalizations of the models to more than 2-3 dimensions
and hierarchies.

In our experience with OLAP datasets, the multiplicative form provided better �t than
the additive form. For ease of calculation, we transform the multiplicative form to a linear
additive form by taking a log of original data values. We thus have

l̂i1i2:::in = log ŷi1i2:::in =
X

G�fd1;d2;:::dng


G(irjdr2G) (3.3)

For a three-dimensional cube, this equation takes the form:

l̂ijk = log ŷijk = 
 + 
Ai + 
Bj + 
Ck + 
ABij + 
BC
jk + 
ACik :

To get a intuition for why the multiplicative form should �t the OLAP data well,
consider a two-dimensional cube with dimensions \product" and \store" where the values
in the cell indicate counts of total units sold. This cube is generated by counting how
many unit transactions correspond to a particular store and product. Let y++ be the
total number of unit transactions and yij denote the count for product i and store j. We
can model the transactional data as (an empirical) multinomial distribution with variables
store and product. The joint probability distribution of these two variables is represented
by the values in the cube when we divide each value by y++, i.e., pij = yij=y++. Let
pi+ denote the marginal probability of a transaction on product i and let p+j denote the
probability of it from store j. When the variables are independent, the joint probability
pij = pi+p+j . Thus, yij = y++pi+p+j =

yi+y+j

y++
. Thus, the contribution of row i and column

j are multiplied together. This is an approximation of the complex real world phenomenon
that generated the data. But, it helps us form statistical justi�cation for the empirically
observed superior �ts for the multiplicative model.

3.4. Estimating model coe�cients

We now discuss how we estimate the coe�cients of the model equation. Two possible
approaches are:
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1. Mean-based estimates: For deriving these estimates we assume the logarithms of
the values are distributed normally with the same variance. The following approach
yields the least-squares estimates in that case [HMT83]:

� 
 = `+:::+ which is the grand mean or average. Note that a \+" in the ith index
denotes an aggregation along the ith dimension.

� 
Ar
ir

= `+::+ir+::+ � 
 where `+::+ir+::+ is the mean over all values along irth

member of dimension Ar. Thus, 
Ar

ir
denotes how much the average of the

values along irth member of dimension Ar di�ers from the overall average.

� (
)ArAs

iris
= `+::+ir+::+is+::+ � 
Ar

ir
� 
As

is
� 
.

In general, the coe�cients corresponding to any group-by G are obtained by sub-
tracting from the average ` value at group-by G all the coe�cients from higher level
group-bys. Intuitively, the coe�cients re
ect an adjustments to the mean of the cor-
responding group-by after all higher-level adjustments are taken into account. If a
user is navigating the data cube top-down, then the coe�cients re
ect how di�er-
ent the values at more detailed levels are, based on the general impressions formed
by looking at higher level aggregates. This helps provide easy grasp of why certain
numbers are marked exceptions.

2. Other robust estimates: The main shortcoming of the mean-based approach is that
it is not robust in the presence of extremely large outliers. Therefore, a number
of methods including the median polish method [HMJ88] and the square combining
method [HMJ88] have been proposed. These are all based on using robust estimates of
central tendency like \median" or \trimmed-mean" instead of \mean" for calculating
the coe�cients. Trimmed-mean of a set of values is de�ned as the mean of the values
left after a certain fraction of the extreme values (largest and smallest) have been
trimmed o�.

We used the 75% trimmed-mean where 25% of the extreme values are trimmed o� and the
mean is taken of the middle 75% numbers. By dropping 25% of the extreme numbers, we
make the method robust to outliers.

3.5. Estimating standard deviation

In classical Analysis of Variance (ANOVA) methods [Mon91], the standard deviation
for all the cells is assumed to be identical. The variance (square of standard deviation)
is estimated as the sum of squares of the residuals divided by the number of entries. We
found that this method provides poor �ts on OLAP data. In the analysis of contingency
tables [BFH75], where cell entries represent counts, the Poisson distribution is assumed.
This assumption implies that the variance is equal to the mean. When the entries are not
counts (e.g., large dollar values), this typically leads to an underestimate of the variance.

The method we use for estimating variance is based on a slight modi�cation of the
previous models. We model the variance as a power � of the mean value ŷi1:::in as:

�2
i1i2:::in = (ŷi1i2:::in)

� :
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To calculate � we use the maximum likelihood principle [CL86] on data assumed to be
distributed normally with the mean value ŷi1i2:::in . According to the latter, one can derive
that the estimated value of � must satisfy:

X (yi1i2:::in � ŷi1i2:::in)
2

(ŷi1i2:::in)
�

� log ŷi1i2:::in �
X

log ŷi1i2:::in = 0 : (3.4)

The method we used for solving the equation to �nd � is discussed Section 4.

3.6. Summarizing exceptions

As discussed in Section 2, we need to summarize exceptions in lower levels of the cube
as single values at higher levels of cube. For all cells displayed, the user should be able to
�nd out: (1) what cells are exceptions in their respective group-bys; (2) what cells need to
be drilled down further for exceptions underneath them and, for each such cell; (3) what
is the best path for getting to the exceptions. These questions are answered by the three
kinds of quantities: SelfExp, InExp and PathExp that we introduced in Section 2. We
now de�ne them in terms of the model coe�cients.

SelfExp:. denotes the exception value of the cell. This quantity is de�ned as the scaled
absolute value of the residual de�ned in Eq. 3.2 with a cut-o� threshold of � . Formally,

SelfExp(yi1i2:::in) = max

�
jyi1i2:::in � ŷi1i2:::in j

�i1i2:::in
� �; 0

�

InExp:. denotes the total degree of surprise over all elements reachable by drill-downs
from this cell. One de�nition of InExp could be the sum of the SelfExp of all cells
underneath it. However, with sum, several small SelfExp could add up to give a larger
value of InExp than a cell containing a few but very large SelfExps underneath it. The
\Max" function seemed to be a better choice for our purpose. Formally, the InExp of a
cell yi1i2:::in :

InExp(yi1i2:::in) = maxfSelfExp(yj1j2:::jn)j(8r; 1� r � n; ir = jr or ir = +) & (fj1; : : : jng 6= fi1; : : : ing)g

PathExp:. denotes the degree of surprise to be anticipated if drilled down along a par-
ticular path for each possible drill down path from the cell. We de�ne PathExp as the
maximum of the SelfExp over all cells reachable by drilling down along that path. Formally,

PathExp(yi1i2:::in ; k) = maxfSelfExp(yj1j2:::jn)j(8r; 1� r � n; ir = jr or ir = +) & jk 6= +g; 8k where ik = +
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Products All

Stores 1 2 3 4 5 SelfExp InExp

1 0 0 0 3 0 0 3

2 0 3 0 0 0 3.5 3

3 0 3 0 0 0 0 3

4 0 3 0 0 0 0 3

5 0 0 0 0 0 2.8 0

All SelfExp 0 0 0 0 0 0 -

InExp 0 3 0 3 0 - 3.5

Table 1: Residuals in the product store plane

Example. Table 1 illustrates these de�nitions with a hypothetical example of a Product-
Store cube showing the SelfExp values in the innermost square of cells. For cells in the
Product-Store plane only SelfExp values are meaningful, whereas for the Product plane
(bottom rectangle) or the Store plane (rightmost rectangle) both the SelfExp and InExp
values are shown. For the ALL group-by (shown in the bottom-rightmost rectangle), the
InExp is the maximum over the InExp and SelfExp of the product group-by and store
group-by. The PathExp is also of interest for this group-by since there are two drill-down
paths from it. Path store has a PathExp value of 3.5 whereas the product path only has
a value of 3.

3.7. Other extensions

3.7.1. Hierarchies. Our model equation (Eq. 3.3) used for calculating the expected
value can be extended to handle hierarchies along one or more dimensions of the cube.
The basic idea adapted from [Mon91] is to de�ne the anticipated value, not only based on
row and column position but also on its parents along the hierarchies. For instance, consider
values `ij in a cube consisting of two dimensions A and B where dimension A has two levels
of hierarchies: A1 ! A2 ! ALL. To calculate an anticipated value at A1B group-by, in
addition to the row coe�cient 
A

1

i at group-by A1, column coe�cient 
Bj at group-by B
and overall coe�cient 
 at group-by ALL, we have two new terms corresponding to the
two new aggregations A2 and A2B along the hierarchy on A. The modi�ed equation is:

^̀
ij = 
 + 
A

1

i + 
Bj + 
A
2

i0 + 
A
2B

i0j

where i0 denotes the parent of i at hierarchy level A2, 
A
2

i0 denotes the contribution of the

i0th value at group-by A2 and 
A
2B

i0j denotes the contribution due to the i0jth value at

group-by A2B. These additional coe�cients have the e�ect of conceptually dividing the
original two-way table on A and B into a collection of sub-tables on A2B corresponding to
di�erent values of A1. This is justi�ed since we expect values belonging to the same group
of a hierarchy to behave similarly.

The general formula for handling hierarchies is to express a value in a cube in terms
of coe�cients obtained from all of its less detailed group-bys. For instance, for the val-
ues at A1B in the equation above, we used coe�cients from the �ve higher group-bys:
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A1; A2; B; A2B;ALL. For estimating these coe�cients we follow the same recursive rule
of Section 3.4 where we �rst estimate 
 as the overall average and then for terms corre-
sponding to each group-by G we compute the average at G and then subtract from it the
coe�cients from each child of G.

3.7.2. Time series regression. Data in the OLAP cube often has a time dimension.
Time is special in that it is ordered unlike nominal dimensions such as product and store.
Therefore, one expects to �nd patterns like trends (steady increase or decrease in mean
value over time) and seasonality (cyclic changes at periodic intervals) [Cha84] that are
speci�c to time.

The model equation is very powerful in that it can automatically �lter out trends and
seasonality common to all elements of the cube even when treating time as a categorical
attribute. For instance, suppose the total sales of all stores is much higher in December
than in any other month. When looking at the sales of a single store \s" along time, the
sales in December might appear exceptionally high compared to other months but when
comparing the sales in December across all stores, the high value of sales for store s in
December will not appear exceptional. Only, the coe�cient corresponding to the month of
December every year will have a high value. These exceptions can also by �ltered away by
de�ning a hierarchy on months of the year. Thus, all \December" months will belong to
the same node of the hierarchy and the coe�cient in the model equation corresponding to
\December" will have a high value. Therefore, we will not report December of each of the
�ve years as an exception. We get only one exception in the month of December over all
years. Thus, appropriate hierarchies can be de�ned to account for seasonality in the time
dimension.

More extensive and re�ned modeling is also possible to automatically detect trends and
seasonality in the data using other methods of time series analysis [Cha84]. For instance,
we can extend the model equation with additional terms contributed from adjacent points
in time. We defer this discussion to future.

3.8. Alternative approaches

We chose the exception model described above after studying several alternatives. We
discuss some of the ones considered to justify our selection.

Extreme values in a set:. The simplest approach would be to treat all the values in
the cube as a 
at set and mark any extreme value as an exception. Several methods of
varying complexity can be used for identifying extreme values in a 
at set of values:

� Values that are more than a certain standard deviations away from the mean [HMT83].

� Elements that cause the largest decrease in variance per element removed [AAR96].

12



Clustering:. In this method, one �rst clusters the values and then marks as exceptions
values that do not belong to any of the major clusters. Several existing clustering tech-
niques [JD88] could be used for this purpose after appropriate modi�cations. (Most of
them discard exceptions as noise [SD90]; we, in contrast, want to isolate small minorities).

The shortcoming of both of the above methods is that in marking a value as an exception
we are not taking into account the position and context in which the values occurs.

Multi-dimensional clustering:. In this method one treats each point as an n + 1
dimensional point (consisting of the n dimensions and the measure value) and �nds clusters
in this n+1 dimensional space. This way one takes into account the entire context in which
the point occurs.

The problem with this method is that for categorical dimensions (like products and
stores) the notion of clusters is often not meaningful and in OLAP data cubes the dimen-
sions are frequently categorical.

Regression on continuous dimensions:. In the rare cases where the cube only con-
tains continuous valued dimensions like age and salary, one can use the rich statistics
literature on outlier diagnostics for multivariate data [RL87, Joh92]. Most of these are
based on �tting regression models on the data and then isolating as exceptions data values
that have a large in
uence on the regression estimator.

Extreme values in multiple groups with same categorical value:. In this method
we keep one set of categorical dimensions �xed and values corresponding to the same value
of these dimensions are put in the same group. In each of these groups we �nd exceptions
using an extreme-value �nding algorithm discussed earlier.

For a cube with attributes A,B,C,D, for each group-by pair (X, Y) where X is a subset
of Y, e.g., (AB, ABCD), one can �nd exceptions in ABCD by grouping numbers with same
value of AB. Thus, each group-by will be associated with a set of exceptions found with
respect to di�erent groupings of it, e.g., for ABCD one needs to �nd exceptions with respect
to ABC, ABD, AB, A and so on. This is the approach used by the Explora project [Klo95]
where a number is marked interesting or exceptional when it is signi�cantly di�erent from
the average value amongst numbers in any larger group to which it belongs.

The problem with this approach is that one may get a large number of exceptions
and most of these could be quite meaningless when inspected in the context of multiple
overlapping grouping regions.

Combined e�ects of categorical dimensions:. Instead of treating each group of val-
ues separately, one develops an expectation of the value by simultaneously looking at the
value in the context of all its dimensions. Our method falls under this category. There
are several ways in which one can combine the e�ect of di�erent dimensions based on the
di�erent functional forms and the di�erent ways of estimating the model parameters. We
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have already discussed these alternatives and the rationale for our choice in sections 3.3,
3.4 and 3.5.

4. Computation Techniques

At �rst glance, our approach may appear unrealizable in practice because of the appar-
ent high cost of computing exceptions at every cell of every group-by of the cube. In this
section, we present fast computation techniques that make our approach feasible for large
OLAP databases. There are three logical phases in the computation of exceptions in the
entire cube:

1. The �rst phase involves the computation of the aggregate values (as speci�ed by the
user-provided aggregate function) over which exceptions will be found at each group-
by of the cube. This is essentially the problem of cube computation and e�cient
computation techniques for this problem have been developed in [AAD+96].

2. The next phase is model �tting, i.e., �nding the coe�cients of the model equation
and using them to �nd the residuals as discussed in Section 3.1.

3. The �nal phase involves summarizing exceptions found in the second phase as dis-
cussed in Section 3.6. Computationally, this phase is similar to phase 1. There is,
however, one di�erence. Each group-by needs to aggregate all of its immediate par-
ents for calculating the PathExp values whereas for phase 1 any one of the parent
group-by can be used for computing the aggregate functions. Therefore, the optimiza-
tions based on choosing a good parent for each group-by [AAD+96] are inapplicable
here. However, other optimizations [AAD+96] based on pipelining the computation
of multiple group-bys and using partially sorted parents are applicable. Also, we
need to consider only tuples that have non-zero SelfExp and InExp values. Thus,
this phase can be expected to be much faster than the other phases.

In the rest of this section, we will focus on phase 2. The computation needs to be
planned carefully because in most cases, the data will be too large to �t in main mem-
ory and intermediate results will often have to be read/written to disk requiring careful
optimizations.

4.1. Model �tting

In general, we need to �t separate equations for di�erent group-bys of the cube as
discussed in Section 3.2. We will �rst consider the scenario where a single equation is �t on
the base level data. Later in Section 4.2, we will discuss how to simultaneously �t multiple
equations, one for each of the group-bys of the cube.

We �rst present a method called UpDown that is directly based on Eq. 3.3 and later
present improvements.
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4.1.1. The UpDown Method. Recall from Section 3.4 that the coe�cients at each
group-by G of the cube is equal to the average value at G minus the sum of the coe�cients
of all group-bys that are subsets of G. Thus, an e�cient way to compute the coe�cients is
the following two pass approach: First in the up-phase, compute the average ` value (call it
avg-l) at each group-by starting from the most detailed group-by. This is computationally
similar to the cube computation of phase 1 where we compute the user speci�ed aggregate
function (call it user-agg). Thus, phase-1 and the up-phase of phase 2 can be combined
to save on the disk scan and sorting costs. Then in the down-phase, subtract from each
group-by G the coe�cients of all its subsets starting from the least detailed group-by
(ALL).

Find-coe�cients

Up-phase:

For each group-by G starting from the most detailed group-by
Compute the user-agg and avg-l values from one of its parents

Down-phase:

For each group-by G starting from the least detailed
Compute coe�cient at G by subtracting from avg-l values, coe�cients

from all group-bys H where H � G.

Example:. Consider a three attribute cube ABC. We �rst compute the average value
for each of the 23 � 1 = 7 group-bys of the cube by starting from the ABC group-by and
computing the average at AB, AC and BC from ABC, computing the average at A from
one of AB or AC and so on, using the cube computation methods of [AAD+96]. We then
compute the coe�cient starting from ALL. The coe�cient of each member of group-by A
is the average value at the member minus the coe�cient of its parent ALL, the coe�cients
at AB is the average at AB minus the coe�cients at A, B and ALL and so on. Finally, we
subtract from the average ` value at ABC coe�cients at AB;AC;BC;A;B; C and ALL.

Analysis. The up-phase involves cube aggregation as in phase 1. The down-phase is
computationally rather intensive because, in general, for computing the coe�cients of a
n attribute group-by we need to subtract coe�cients from 2n � 1 other group-bys. This
is equivalent to joining the n-attribute group-by with 2n � 1 other group-bys. When the
size of these group-bys is large, computing so many multi-attribute joins per group-by can
incur large sorting and comparison costs.

4.1.2. Modi�ed UpDown method. We can reduce the number of sorts and I/O costs
needed for the down-phase by subtracting together from each group-by G, a collection of
its subset group-bys instead of subtracting one subset at a time. Choosing which subsets to
collect together requires careful planning. To e�ciently perform the subtraction operation
between a group-by G and its subset H we sort both G and H in the same order. A
group-by G (on more than one attribute) cannot simultaneously be sorted with respect
to all of its subsets. Therefore, we partition the subset group-bys such that G is sorted
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once for each group-by in the same partition. Minimizing the number of such partitions
leads to minimization of sorting and I/O costs. We present below a greedy procedure
for determining the partitions and performing the subtract operation on each group-by.
(We also have an algorithm for �nding the optimal number of partitions using a maximal-
matching based algorithm developed using ideas similar to those in [AAD+96]. However,
for the sake of simplicity we describe here a greedy approximation of the algorithm that
comes close to the optimal in most cases.)

Find-coe�cients at G

Find-partitions:
Initially each subset H of G de�nes its own partition.
For each subset H starting from least detailed group-by ALL.

Find an immediate un-matched parent P of H resolving ties
by choosing one sorted in the same order as H .

If a valid parent found,
merge P to partition of H and sort P in same order as H .

Perform-subtraction:
For each partition S of subsets

sort G in the order of group-bys in the partition.
subtract all group-bys in S from G in one pass of G.

Example. Assume after the up-phase each of the group-bys are sorted in their lexico-
graphic order. We partition the subsets for the down-phase of ABC as follows: First, ALL
and A are merged to belong to same partition. Then, we merge ALL, A and AB in one
partition, B and BC in second partition and C and AC in the third partition. All subsets
are sorted in the right order except AC which is re-sorted in the order CA. During the
subtraction phase, for the �rst partition ABC is already sorted in the right order, for the
second we sort it in the order BCA and for the third we sort in the order CAB.

Analysis. For a n attribute group-by we cannot have less than C(n; n=2) = n!
(n=2)!(n=2)!

partitions of its subsets. This is so because the number of subset group-bys of size n=2 is
C(n; n=2) and none of these can be subsets of each other. Note that although C(n; n=2) is
much smaller than 2n � 1, it is still exponentially larger than n.

4.1.3. Rewriting. We now discuss further ways of speeding up computation by rewriting
Eq. 3.3. Instead of the 2n � 1 terms in Eq. 3.3, we express the expected value as a sum of
n terms as follows:

^̀
i1 :::in = g1 + : : :+ gn; where gr = avgir(`i1:::in � g1 � : : :� gr�1) (4.1)

As an example, consider a cube with three dimensions A;B; C.

^̀
ijk = g1ij + g2ik + g3jk ;

16



where;

g1ij = avgk(`ijk)

g2ik = avgj(`ijk � g1ij)

g3jk = avgi(`ijk � g1ij � g2ik):

The coe�cients from the original Eq. 3.3 can be rewritten in terms of the new coe�cients
as:

rijk = `ijk � (g1ij + g2ik + g3jk)


ij = g1ij � g1i � g1j ;where

g1i = avgj(g
1
ij);

g1j = avgi(g
1
ij � g1i );


ik = g2ik � g2k;where

g2k = avgi(g
2
ik);


kj = g3jk


i = g1i � g1;where

g1 = avgi(g
1
i )


j = g1j


k = g2k


 = g1

Hierarchies can be incorporated in this equation easily. The equation would still contain
k terms for a k dimensional cube. The only di�erence is that instead of averaging along all
the values along a dimension, we average together elements that belong to the next level
of the hierarchy along that dimension.

Lemma 4.1. Equations 3.3 and 4.1 yield the same set of residuals when the cube contains

no missing data.

Proof. Replace the coe�cients in Eq. 3.3 with the formula for their estimates in sec-
tion 3.4. Thus, for three dimensions the equation takes the form:

^̀
ijk = `+++ � `i++ � `+j+ � `++k + `ij+ + `i+k + `+jk (4.2)

This can be generalized to arbitrary number of dimensions where for each group-by we
have a term with a positive coe�cient when an even number of dimensions are aggregated
(denoted by +) and a negative coe�cient otherwise.

Now consider Eq. 4.1. We prove the equivalence of the rewrite step using induction.
The rewrite holds for n = 1. Let us assume that it holds for some n = k. Thus, the RHS
of Eq. 4.1 is equivalent to the RHS of Eq. 4.2. For n = k + 1, divide the terms in Eq. 4.2
into two parts: part 1 contains terms not aggregated along (k+1)th dimension and part 2
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contains the remaining terms. The sum of the �rst k terms g1 : : : gk of Eq. 4.1 gives us all the
terms in part 1, i.e., those not aggregated along the k+1th dimension (by induction). The
term gk+1 is equal to avgik+1(`i1:::ikik+1 � g1�� � �� gk) = avgik+1(`i1���ikik+1)� avgik+1(g

1+

� � �+ gk) when the cube contains no missing values. The term avgik+1(g
1 + � � �+ gk) gives

all terms of Eq. 4.2 aggregated along dimension k + 1 and at least one other dimension.
Thus, together g1 : : : gk and gk+1 yield all the relevant terms.

When a cube does contain missing data, the residuals could di�er depending on the
number of missing values. One should evaluate the coe�cients iteratively ([HMJ88], chap-
ter 4) for producing accurate least squares �t in such cases. However, these methods are
not practical for our goal of pre-mining an entire large database since they require multiple
passes (often 10 or more) of data. Our implementation ignores the missing values in the
calculation of the coe�cients in both equations by calculating the average only over the
values actually present.

Computing with Eq. 4.1. The rewritten formula can be computed as follows. First
compute g1 by averaging the starting `i1:::in values along dimension in, subtract values g

1

from the original ` values, average the subtracted value along dimension in�1 to compute
g2, subtract the values at g2 from the modi�ed ` values and so on until all dimensions
are aggregated. The �nal ` value directly gives us the residual. Next, compute the other
coe�cients of the equation by recursively repeating the process for higher level aggregates
on the average g values just calculated. These operations can be overlapped with the
computation of the user-agg function of phase-1 as follows:

Compute(G)
Mark G as computed.
For each immediate child H of G not marked computed

Compute and store the user-agg and avg-g values at H from G
Subtract the avg-g value at H from G

For each H above
Compute(H) /* on the avg-g values. */

Initial call: Compute(Base level cube)

The above procedure is �rst invoked on the base level group-by A1A2 : : :An and there-
after all the coe�cients are obtained at their respective levels recursively. Note that each
group-by G is computed only once in the above procedure.

Example. In Figure 7 we show the example of a three attribute group-by and the se-
quence of computations needed for getting its coe�cients and residuals. An upward arrow
denotes the averaging phase and a downward arrow denotes the subtraction phase. The
numbers beside each edge denotes the order in which these operations are performed. We
�rst average ABC along C to obtain AB, subtract the values at AB from ABC, average
ABC along B to obtain AC, and so on until BC is subtracted from ABC. Next, we
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compute the coe�cient at AB by averaging its g values along dimension B to obtain A,
subtract out the results from AB and so on. When computing coe�cient at AC we do not
average and subtract along A because A has already been computed by averaging AB.
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Figure 7: Fitting single equation for

a three-attribute cube
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Figure 8: Fitting multiple equations

for a three-attribute cube

Bene�ts of rewriting. The advantage of rewriting Eq. 3.3 into Eq. 4.1 as above is three
fold. First we can compute the residuals of a k-dimensional cube by joining it with at most
k other group-bys instead of 2k � 1 group-bys as in Eq. 3.3, an exponential di�erence in
the number of join (subtraction) operations. Second, we can compute the residuals the
same time as we compute the aggregate values in phase 1 and thus save on the sorting and
comparison costs. Finally, there is no additional sorting cost beyond cube computation
since, unlike in the UpDown method, the subtraction operation is followed immediately
after the aggregation operation. For instance, when we sort ABC in the order BCA to
compute BC, we can directly subtract the BC values from BCA and thus do not have to
incur any additional sort cost on ABC for the subtraction phase. Thus, not only are the
number of join operations exponentially smaller but also the cost of each join is signi�cantly
reduced since the joins require the same sorting order as the aggregation that precedes it.

Alternative Rewritings. There are other ways in which we could have rewritten Eq.3.3.
For instance, for n = 3 another way of rewriting the equation is:

^̀
ijk = gABij + 
Ck + 
ACk + 
BC

k ;where

gABij = avgk(`ijk)

The above equation uses four terms whereas Eq. 4.1 requires only three.

The goal in rewriting the equation in terms of as few coe�cients as possible is to reduce
the computation cost. Eq. 4.1 involves the fewest number of terms in each equation. It is
because any equation equivalent to Eq. 3.3 must contain at least n terms since we must
have at least one term from each of the n � 1 dimensional group-bys.
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4.2. Simultaneous computation of multiple equations

We can adapt our method for �tting single equations to the case where we �t simul-
taneously multiple equations | one for each group-by of the cube. A naive solution is to
independently solve the single-equation problem for each group-by. But we can reduce cost
by overlapping the model �tting step of multiple group-bys.

For the UpDown method, we can overlap as follows: For each k attribute group-by of
the cube in the up-phase, compute and store the average ` value for each of the 2n�k � 1
parents of the group-by instead of just the base level group-by. This implies that in the
up-phase each group-by will have to compute averages along all of its immediate parents
instead of just one of them. For instance for a 3-D cube, for group-by A we will need to
store three coe�cients for the equations at group-bys AB, AC and ABC and for group-
by ALL we need to store seven coe�cients. This is ine�cient both computationally and
storage-wise.

The rewrite method, enables us to �t multiple equations much more e�ciently. We
proceed bottom up and �rst compute the residuals for the bottom-most group-by using
the aggregation and subtraction operations with respect to its immediate children group-
bys as in the single equation case. At the end of this, the residuals for the bottom-most
group-by are already computed. Thus, we can drop the g terms calculated so far and start
to �t the equations of the n� 1 attribute group-bys on the aggregated function user-agg.
Each of these n � 1 dimensional group-bys can now be treated independently and we can
recursively �t equations for each group-by of the cube as shown in the pseudo-code below.

ComputeMulti(G)
For each immediate child H of G

Compute the avg-g values at H by aggregating G
If G is the smallest parent of H

also, compute and store user-agg function along with above step
Subtract the avg-g value at H from G

For each H whose user-agg function computed above
ComputeMulti(H) /* on the user-agg function values. */

Initial call: ComputeMulti(Base level cube)

Note the two key di�erences between the routine Compute() for the single equation
case and ComputeMulti() for the multi equation case. First, for each group-by all of its
immediate children are used instead of just the un-computed ones as in the single equation
case. Second, for each group-by we start from the aggregate function value for that group-
by rather than the g values computed from the previous group-by.

Example. Figure 8 shows the sequence of aggregation and subtraction operations that
happen when �tting multiple equations using the rewrite procedure. The numbers beside
each edge denotes a correct order in which these operations could be performed. The
residuals at ABC are computed after step 6. Step 7 then operates on the aggregate values
at AB and so on.
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4.3. Estimating variance

The estimation of variance requires us to solve Eq. 3.4. Since a closed form solution of
this equation is not available, we solve the equation iteratively. To avoid making multiple
passes of the data, we evaluate the equation for a �xed set of values of � (10 in our case
equally spaced between 0 and 3). The �nal value is the point in between the two points
where the sign changes. If the value of � happens to fall outside the chosen range a re-scan
of the data with the expanded range is necessary. For none of our experiments so far we
had to rescan. For calculating the variance we do not have to incur additional data scans
because in both the rewrite and the UpDown method we know when the last subtraction
for a term is completed and thus can use the residuals to directly perform the variance
calculations.

4.4. Experiments

We study the performance of model-�tting and show how the gap between the modi�ed
UpDown and the rewrite schemes increases as we increase the number of dimensions. We
also compare the total time to �nd exceptions with the time to compute aggregates in a
data cube.

Experiments with synthetic datasets. We �rst report our experiments with synthetic
datasets used to study the trend as the number of dimensions is scaled up.

Each dataset consists of one million tuples and all dimensions of the cube have equal
number of members. Of the total number of dimension combinations possible 20% are
assumed to be present. These points are assumed to be distributed uniformly randomly in
the cube. The exact value of the measure is not important since we are only interested in
the running time. The number of dimensions is varied from 3 to 6.

Figure 10 shows the time to do model-�tting using the rewrite scheme relative to the
modi�ed UpDown scheme (MUD) for the single equation case. We also show the time to
simply compute all the group-bys (Agg). The total execution time is normalized by the
time taken by \Agg". The Figure shows that as we increase the number of dimensions
the di�erence between the rewrite and the UpDown methods of model-�tting becomes
even wider. However, the gap between model-�tting using UpDown scheme and aggregate
computation does not increase much and remains within 20% in all cases. This con�rms
our earlier conclusions based on the complexity analysis.

Real-life datasets. In these experiments we study the total time taken to �nd exceptions
and compare it with the aggregate computation time. Exception �nding time includes all
the three phases of aggregate computation, model-�tting and exception summarization.

Datasets. The three datasets we used in our experiments were derived from sales trans-
actions of various department stores and mail order companies. A brief description is given
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Figure 9: Time to do model-�tting using the rewrite and UpDown methods compared against

simple aggregate computation. The y-axis denotes the total time normalized by the time taken by

\Agg" for each dataset.
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Figure 10: Time to run various algorithms on three real life datasets. The y-axis denotes the total

time normalized by the time taken by \Agg" for each dataset. RW and MUD also include the time

to summarize exceptions.
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next. The datasets di�er in the number of transactions, the number of attributes, and the
number of distinct values for each attribute.

� Dataset-A: This data is about supermarket purchases. Each transaction has three
attributes: store, date and product category. There are a total of 5 million transac-
tions.

� Dataset-B: This data is from a mail order company. A sales transaction here con-
sists of three attributes: the customer identi�er, the order date (month and year)
and the product. In addition, there is hierarchy on product dimension that groups
products based on their category and a hierarchy on the date dimension that groups
the monthly dates to \years". There are a total of one million transactions.

� Dataset-C: This is data about grocery purchases of customers from a supermarket.
Each transaction has four attributes: the date of purchase, the shopper type, the
store code and the product group of the item purchased. There are a total of one
million transactions.

Figure 10 shows the total time to �nd exceptions using the rewrite(RW) and modi�ed
UpDown(MUD) methods compared with aggregate computation (Agg). From this �gure
we can make the following observations:

� The performance improves almost three-fold by using the rewrite technique when
compared with the UpDown scheme.

� The improvement is higher for dataset-B and C than dataset-A since dataset-A con-
sists of only three dimensions and no hierarchies. For dataset-A, the number of passes
needed on the base cube (the largest group-by in the cube) for the down-phase of
the UpDown method is C(k; k=2) = 3 when k = 3. This is same as the number of
passes on the base cube for the rewrite scheme. There is still a small improvement
because for the rewrite scheme we need no additional sorting over \Agg" computation
whereas for the UpDown scheme at least two additional sorts are needed.

� After the rewriting, the time to �nd exceptions and summarize them comes to within
a factor of 2.2 of the time to compute group-bys. Thus, computationally, pre-mining
for exceptions in OLAP data is within tolerable expense.

Performance when �tting multiple equations. We also measured the time to �t
multiple equations at all group-bys of the cube. Drawing upon the performance results for
the single equation case, we only experimented with the rewrite method. We found that
for the rewrite scheme time to �t multiple equation comes to within 10% of the time to �t
single equations for all the real-life and synthetic datasets. This is expected because the
extra work needed for �tting multiple equations arises only at upper levels of aggregations
where the size of the group-bys is much smaller than the lower level group-bys (compare
�gures 7 and 8 as an example).
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Prod.Grp Tool
Prod.Cat PDT
Prod.Name DBMS Engines (Non-Object)
Plat.Users M
Plat.Type UniM
Plat.Name Multiuser UNIX SunSoft Solaris

Average of Revenue Years
Geography 1990 1991 1992 1993 1994
Asia/Pacific 2.42 2.92 5.20 8.00 19.84
Rest of World 2.64 5.23 10.02 15.12 23.90
United States 19.61 27.18 40.40 62.31 5.30
Western Europe 14.32 23.78 36.80 55.95 78.29

Figure 11: Exceptions in the S3GP 3
Y plane of the software dataset.

4.5. Experience with software revenue data

An important step in the evaluation of a mining technique is not simply to measure
its performance but also to check whether it found anything interesting or surprising in
real-life datasets. In Section 2 we showed some qualitative results with a dataset that the
OLAP vendor Essbase ships as an example of a typical OLAP dataset. In this section we
report on some interesting exceptions we found with another real-life dataset. This dataset
(available from the International Data Corporation and also the Cognos web site [Cor97])
is about the total yearly revenue of various software products on di�erent platforms across
di�erent regions of the world for years 1990 to 1994. The dimensions are as follows. The
numbers within brackets give the number of members for each dimension.

� Software products, S: 3 level hierarchy [Category(3),S1 ! Group(14), S2 !Name(68),
S3 ]

� Geography, G: no hierarchy, 4 members

� Platform, P : 3 level hierarchy [Number of users (2), P 1 ! type(16), P 2 ! name(43),
P 3]

� Year, Y : no hierarchy, 5 members (1990 to 1994).

The data has 18115 points out of 58480 possible. The function used for aggregating data
at higher levels is average. We present two of the interesting exceptions found using our
methodology:

In Figure 11 we show the revenue �gures for DBMS Engines on the Multiuser UNIX
Sunsoft Solaris platform. Notice that, in 1994, in US, the revenue of DBMS products
dropped by 1/10th on the Sun Solaris platform. We mark this as an exception because it
stands out along all di�erent views of the data. On comparing this exception along each
of the four dimensions while keeping the other three �xed we �nd:

1. In other geographies, revenue increased by at least 30% for DBMSs on Sun Solaris.
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Plat.type (All)
Prod.name (All)
Plat.name (All)
Plat.users (All)
Year (All)
Prod.Grp SySW

Average of Sales Geography
Prod.Cat Asia/Pacific Rest of World United States Western Europe
DCS 2.78 3.87 9.36 7.87
Mdw 0.99 0.09 0.60 0.30
Oth 0.38 0.25 1.70 0.74
SMS 2.95 2.86 8.31 6.26
SSW 20.64 23.10 42.11 36.39
SUt 4.35 4.48 10.79 9.84
SyI 7.19 0.28 1.82 0.97
UMO 9.78 10.81 30.35 21.04

Figure 12: Exceptions in the S2G plane of the software dataset.

2. For other products in the same category, revenue increased by at least 20% in US on
Sun Solaris.

3. On most other platforms, revenue increased by at least 30% for DBMSs in US.

4. For other years, US accounts for almost 40% revenue of DBMSs on Sun Solaris
whereas it is only second largest in 1994.

Note that this exception occurs at the lowest level of detail and it might have been almost
impossible for a manual inspection process to �nd this big drop since at the upper levels
of aggregations the impact of this drop is not signi�cant.

There are exceptions at higher levels of aggregations too. In Figure 12 we show an
exception found in the group-by (Product.category, Geography) for the category SyI (Sys-
tem Integration software) and the Asia/paci�c region. This is an exception since overall,
Asia/Paci�c accounts for only 12% of the revenue whereas it is 70% just for this product
category. On drilling down, we observe that this trends holds for all platforms and instead
of marking each of these points as an exception, we report a single exception at a higher
aggregation level.

5. Conclusion

5.1. Contribution

� We developed a novel method of e�ectively navigating large OLAP data cubes. Our
method guides the user to interesting regions exhibiting anomalous behavior using
pre-computed exceptions. This method enhances a user's capability of discover-
ing interesting areas in the data compared with the current manual discovery, and
greatly reduces the number of drill-down and selection steps that analysts currently
go through { especially in large cubes with many di�erent dimensions and hierarchies.
We are not aware of any OLAP system that currently o�ers this capability.
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� We presented the statistical foundation of our methodology for identifying exceptions,
which was chosen after considering a number of other competing techniques and
suitably adapted so as to best match the requirements of OLAP datasets. This
methodology seamlessly integrates hierarchies and �nds exceptions at multiple levels
of aggregations. The coe�cients at di�erent levels of the cube have the property that
they re
ect adjustments to the combined average value obtained from higher level
aggregations of the cube. As the user typically navigates the data cube top-down,
this enables the user to very naturally capture the context in which the value was
declared an exception.

� We devised methods of e�ciently computing exceptions. Novel rewriting techniques
are used to reduce the cost of model �tting and modifying the computation 
ow so
as to mesh exception �nding with cube computation. These optimizations enable us
to �t separate equations at each of the di�erent group-bys of the cube in almost the
same time it takes to compute aggregates | this is something which was not evident
when we started work on the problem.

� Our notion of exceptions ties in well with the cube metaphor and thus enables easy
integration into existing MOLAP and ROLAP products. The process of �nding
exceptions involves the same kind of aggregations and scan operations as normal
aggregate precomputation. The exception themselves can be stored, indexed and
retrieved just like precomputed aggregates. Our prototype on Essbase has been
implemented using this same principle.

� We showed how using our techniques we found interesting exceptions in two OLAP
datasets. We have also applied the proposed method to two rather unconventional
OLAP datasets. The �rst data-set was obtained from an auto insurance company
and we used our prototype to study exceptional patterns relating age, marital status,
profession and location to the number of insurance claims a person makes. The
second data set was obtained from a chain store that sells both catalog and retail
goods. We found exceptions at di�erent levels to identify regions of exceptionally
high or low market shares of retail and catalog sales amongst di�erent income levels,
age groups and geographical locations. These studies further validated the utility of
the proposed approach.

5.2. Future work

� Special treatment of time dimension: Time is an ordered dimension and it is possible
to apply special time series analysis techniques [Cha84] to further re�ne the notion
of exceptions. We are working on ways to enhance our model equation to integrate
these order speci�c terms.

� Model selection: It is possible that the full model equation with all its terms may lead
to over-�tting and a simpler model could provide a better �t. We are experimenting
with two schemes for model selection: one based on the minimum description length
principle [Ris87] and the other based on statistical tests of goodness of �t [BFH75].
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� User customization: In some situations users may want to in
uence the automated
process with their own domain-dependent notion of exceptions, for instance, pro-
viding di�erent weights to variations along di�erent dimensions. The challenge in
providing support for user customization is �nding an appropriate expression lan-
guage that can integrate with our statistical notion. Also, users might want to �nd
exceptions only in certain regions of the cube and not in others. This customization
is relatively easy to incorporate.
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