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Abstract. Analysts predominantly use OLAP data cubes to identify
regions of anomalies that may represent problem areas or new opportu-
nities. The current OLAP systems support hypothesis-driven exploration
of data cubes through operations such as drill-down, roll-up, and selec-
tion. Using these operations, an analyst navigates unaided through a
huge search space looking at large number of values to spot exceptions.
We propose a new discovery-driven exploration paradigm that mines the
data for such exceptions and summarizes the exceptions at appropriate
levels in advance. It then uses these exceptions to lead the analyst to in-
teresting regions of the cube during navigation. We present the statistical
foundation underlying our approach. We then discuss the computational
issue of �nding exceptions in data and making the process e�cient on
large multidimensional data bases.

1 Introduction

On-Line Analytical Processing (OLAP) characterizes the operations of summa-
rizing, consolidating, viewing, applying formulae to, and synthesizing data along
multiple dimensions. OLAP software helps analysts and managers gain insight
into the performance of an enterprise through a wide variety of views of data
organized to re
ect the multidimensional nature of enterprise data [Col95]. An
increasingly popular data model for OLAP applications is the multidimensional
database [OLA96][AGS97], also known as the data cube [GBLP96]. A data cube
consists of two kinds of attributes: measures and dimensions. The set of dimen-
sions consists of attributes like product names and store names that together
form a key. The measures are typically numeric attributes like sales volumes and
pro�t. Dimensions usually have associated with them hierarchies that specify
aggregation levels. For instance, store name ! city ! state is a hierarchy on
the store dimension and UPC code ! type ! category is a hierarchy on the
product dimension.

Hypothesis-driven Exploration A business analyst while interactively ex-
ploring the OLAP data cube is often looking for regions of anomalies. These
anomalies may lead to identi�cation of problem areas or new opportunities. The
exploration typically starts at the highest level of hierarchies of the cube dimen-
sion. Further, navigation of the cube is done using a sequence of \drill-down"
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(zooming in to more detailed levels of hierarchies), \roll-up" (zooming out to
less detailed levels) and \selection" (choosing a subset of dimension members)
operations. From the highest level of the hierarchy, the analyst drills-down to the
lower levels of hierarchies by looking at the aggregated values and visually iden-
tifying interesting values to follow. Thus, drilling-down the product dimension
from product category to product type may lead to product types whose sale
exhibited some anomalous behavior. A further drill down may lead to individual
product UPC codes causing this anomaly. If an exploration along a path does
not lead to interesting results, the analyst rolls-up the path and starts pursuing
another branch. A roll-up may lead to the top-level of hierarchy and then further
drill-down may continue along another dimension.

This \hypothesis-driven" exploration for anomalies has several shortcomings.
The search space is very large | typically, a cube has 5{8 dimensions, each di-
mension has a hierarchy that is 2{8 levels deep and each level of the hierarchy
has ten to hundreds of members [Col95]. Simply looking at data aggregated at
various levels of details to hunt down an anomaly that could be one of several
million values hidden in detailed data is a daunting task. Furthermore, the higher
level aggregations from where an analyst starts may not even be a�ected by an
anomaly occuring underneath either because of cancellation of multiple excep-
tions or because of the large amount of data aggregated. Even if one is viewing
data at the same level of detail as where the anomaly occurs, it might be hard
to notice the exception because of large number of values.

Discovery-driven Exploration We propose a new \discovery-driven"method
of data exploration where an analyst's search for anomalies is guided by pre-
computed indicators of exceptions at various levels of detail in the cube. This
increases the chances of user noticing abnormal patterns in the data at any level
of aggregation.

We present a formal notion of exceptions. Intuitively, we consider a value in a
cell of a data cube to be an exception if it is signi�cantly di�erent from the value
anticipated based on a statistical model. This model computes the anticipated
value of a cell in context of its position in the data cube and combines trends
along di�erent dimensions that the cell belongs to. Thus, for instance, a large
increase in sales in december might appear exceptional when looking at the time
dimension but when looking at the other dimensions like product this increase
will not appear exceptional if other products also had similar increase. The model
allows exceptions to be found at all levels of aggregation.

We present computation techniques that make the process of �nding excep-
tions e�cient for large OLAP datasets. Our techniques use the same kind of
data scan operations as required for cube aggregate computation [AAD+96] and
thus enables overlap of exception �nding with routine aggregate precomputation.
These techniques recognize that the data may be too large to �t in main mem-
ory and intermediate results may have to be written to disk requiring careful
optimization.

Paper layout The paper is organized as follows. In Section 2 we demonstrate
a scenario of the use of our proposed method. Section 3 gives the statistical



model we use to compute the anticipated value of a cell and the rationale for
choosing this model. Computation techniques are discussed in Section 4. Refer
to [SAM98] for some performance results and experience with real-life datasets
that illustrates the e�ectiveness of the proposed approach. We conclude with a
summary and directions for future work in Section 5.

2 An Illustrative Example

We illustrate our proposed method using an example session with our prototype
implementation. This prototype uses the Microsoft Excel spreadsheet, extended
with appropriate macros, as the front-end for user-interaction. The backend is
the well-known OLAP product, Arbor Essbase [Arb] that computes and stores
the exceptions using the techniques we present in Sections 3 and 4.

To keep the example brief, we will consider a three-dimensional data cube
with dimensions Product, Market, and Time. There is a hierarchy Market !
Region ! ALL on the Market dimension. The data for this cube is taken from
a sample OLAP database distributed with Essbase [Arb].

We annotate every cell in all possible aggregations of a data cube with a
value that indicates the degree of \surprise" that the quantity in the cell holds.
The surprise value captures how anomalous a quantity in a cell is with respect to
other cells. The surprise value of a cell is a composite of the following three values
(we give de�nitions and discuss how these values are determined in Section 3):

1. SelfExp: represents the surprise value of the cell relative to other cells at the
same level of aggregation.

2. InExp: represents the degree of surprise somewhere beneath this cell if we
drill down from the cell.

3. PathExp: represents the degree of surprise for each drill-down path from the
cell.

Product (All)
Region (All)

Sum of Sales Month
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Total 2% 0% 2% 2% 4% 3% 0% -8% 0% -3% 4%

Figure1. Change in sales over time

Consider a user looking at the monthly sales as a percentage di�erence from
the previous month. Suppose the user starts by viewing the data aggregated over
all products and markets for di�erent months of the year as shown in Figure 1.

To �nd out what parts of the cube may be worthy of exploring further in
terms of exceptions, the user invokes a \highlight exceptions" button that
colors the background of each cell based on its SelfExp value. In addition, each
cell is surrounded with a di�erent colored box based on the InExp value. In



Region (All)

Avg.Sales Month
Product Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Birch-B 10% -7% 3% -4% 15% -12% -3% 1% 42% -14% -10%
Chery-S 1% 1% 4% 3% 5% 5% -9% -12% 1% -5% 5%
Cola -1% 2% 3% 4% 9% 4% 1% -11% -8% -2% 7%
Cream-S 3% 1% 6% 3% 3% 8% -3% -12% -2% 1% 10%
Diet-B 1% 1% -1% 2% 1% 2% 0% -6% -1% -4% 2%
Diet-C 3% 2% 5% 2% 4% 7% -7% -12% -2% -2% 8%
Diet-S 2% -1% 0% 0% 4% 2% 4% -9% 5% -3% 0%
Grape-S 1% 1% 0% 4% 5% 1% 3% -9% -1% -8% 4%
Jolt-C -1% -4% 2% 2% 0% -4% 2% 6% -2% 0% 0%
Kiwi-S 2% 1% 4% 1% -1% 3% -1% -4% 4% 0% 1%
Old-B 4% -1% 0% 1% 5% 2% 7% -10% 3% -3% 1%
Orang-S 1% 1% 3% 4% 2% 1% -1% -1% -6% -4% 9%
Sasprla -1% 2% 1% 3% -3% 5% -10% -2% -1% 1% 5%

Figure2. Change in sales over time for each product

both cases, the intensity of the color is varied with the degree of exception. In
Figure 1, the months with a thick box around them have a high InExp value
and thus need to be drilled down further for exceptions underneath them. Darker
boxes (e.g., around \Aug", \Sep" and \Oct") indicate higher values of InExp
than the lighter boxes (e.g., around \Feb" and \Nov").

There are two paths the user may drill down along from here: Product and
Region. To evaluate which of these paths has more exceptions, the user selects a
cell of interest and invokes a \path exception" module that colors each aggre-
gated dimension based on the surprise value along that path. These are based
on the PathExp values of the cell. In Figure 1 (top-left part) the path along di-
mension Product has more surprise than along Region indicated by darker color.
Drilling-down along Product yields 143 di�erent sales values corresponding to
di�erent Product-Time combinations as shown in Figure 2. Instead of trying to
�nd the exceptions by manual inspection, the user can click on the \highlight
exception" button to quickly identify the exceptional values. In this �gure,
there are a few cells with high SelfExp values and these appear as cells with a
di�erent background shade than the normal ones (darker shades indicate higher
surprise). For instance, sales of \Birch-B(eer)" shows an exceptional di�erence
of 42% in the month of \Oct". In addition, three other cells are also indicated to
have large SelfExp values although the sales values themselves ( 6% for <Jolt-C,
Sep>, -12% for <Birch-B, Jul>and -10% for <Birch-B, Dec>) are not excep-
tionally large when compared with all the other cells. The reason why these cells
are marked as exceptions will be explained in Section 3.

Figure 2 also shows some cells with large InExp values as indicated by the
thick boxes around them. The highest InExp values are for Product \Diet-
S(oda)" in the months of \Aug" and \Oct". The user may therefore choose to
explore further details for \Diet-Soda" by drilling down along Region. Figure 3
shows the sales �gures for \Diet-Soda" in di�erent Regions. By highlighting



Product Diet-S

Avg.Sales Month
Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
C 0% -2% 0% 1% 4% 1% 5% -6% 2% -2% -2%
E 0% 2% -8% 7% 0% 5% -40% 10% -33% 2% 8%
S 0% -1% 3% -2% 2% -2% 19% -1% 12% -1% 0%
W 5% 1% 0% -2% 6% 6% 2% -17% 9% -7% 2%

Figure3. Change in sales of Product \Diet-Soda" over time in each Region

exceptions in this plane, the user notices that in Region \E" (for Eastern),
the sales of \Diet-Soda" has decreased by an exceptionally high value of 40%
and 33% in the months of \Aug" and \Oct" respectively. Notice that the sales
of \Diet-Soda" in the Product-Time plane aggregated over di�erent Regions
(Figure 2) gives little indication of these high exceptions in the Region-Product-
Time space. This shows how the InExp value at higher level cells may be valuable
in reaching at exceptions in lower level cells.

Market (All)
Product Cola

Avg.Sales Month
Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
C 3% 1% 4% 1% 4% 10% -11% -14% -3% 5% 11%
E -3% 3% 4% 4% 13% 2% 0% -10% -13% -3% 8%
S 2% -1% 1% 9% 6% 3% 21% -15% 1% -5% 4%
W -2% 2% 2% 4% 12% 1% 1% -9% -11% -4% 6%

Figure4. Change in sales over Time for Product \Cola" in di�erent Region

There are no other cells with high InExp in Figure 3. Therefore, the user may
stop drilling down and go back to the Product-Time plane of Figure 2 to explore
other cells with high InExp. Suppose, he chooses to drill-down along Product
\Cola" in \Aug". Figure 4 shows the exceptions for \Cola" after drilling down
along Region. The \Central" Region has a large InExp and may be drilled down
further, revealing the SelfExp values in the Market-time plane for \Cola".

3 De�ning exceptions

Intuitively, a value in a cell of a data cube is an exception if it is surprising.
There could be several interpretations of this notion. We present the approach
we use. In [SAM98] we discuss the alternatives we considered before deciding on
our approach.



Product Birch-B
Region E

Sum of Sales Month
State Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Massachusetts 0% -4% 0% -8% 0% -2% 0% 7% 35% -14% -16%
New-Hampshire 5% 10% -13% 17% 3% 14% -27% -17% 57% -11% -41%
New-York 18% -10% 8% -4% 24% -19% -1% 1% 44% -15% -3%

Figure5. Change in sales over Time for Product \Birch-B"

Our choice of exception model was motivated by the following desiderata:

1. We need to consider variation and patterns in the measure value across
all dimensions that a cell belongs to. This helps us �nd values that are
exceptional within the context of a particular aggregation. It is not enough
to simply treat the values in a cube as a 
at set and call extreme values
in the set as exceptions. For instance, consider the example data cube from
Figure 2. If we ignored cell positions, possibly only <Birch-B, Oct> would
be marked as an exception. However, we identify several other exceptions.
Interestingly, the entry <Birch-B, Dec> with value -10% is marked as an
exception whereas entry <Birch-B, Nov> with a higher value -14% is not
because for the \Dec" column almost all other product have a large positive
value whereas in the \Nov" column most other products also have a negative
value. In the \Sep" column, \Jolt-C" has a relatively large positive value
since most other products have a negative value and is therefore marked as
an exception.

2. We need to �nd exceptions at all aggregated group-bys of the cube, and
not only at the detailed level because it simpli�es end-user comprehensibil-
ity through concise representation. For instance, hBirch-B,Octi is an excep-
tion at the hProduct,Monthi group-by (Figure 2) and that means we do not
need to mark as exceptions all the high values for hBirch-B,Oct, *i at the
hProduct,Month,Statei group-by (Figure 5).

3. The user should be able to interpret the reason why certain values are marked
as exceptions. A typical OLAP user is a business executive, not necessarily
a sophisticated statistician. Our method therefore should not require the
user to make choices between complex statistical models and the process of
�nding exceptions should be fairly automated.

4. The procedure for �nding exceptions should be computationally e�cient and
scale for large datasets commonly found in OLAP databases. Also, it should
be generalizable and e�cient for the range of dimensions that are common
in OLAP (typically 3 to 8) and handle hierarchies on dimensions.

3.1 The Model

Consider �rst the problem of �nding exceptions in the most detailed values of
the data cube. We call a value an exception if it di�ers signi�cantly from the



anticipated value calculated using a model that takes into account all aggregates
(group-bys) in which the value participates. This model was inspired by the table
analysis methods [HMJ88] used in the statistical literature.

For a value yi1i2:::in in a cube C at position ir of the rth dimension dr (1 �
r � n), we de�ne the anticipated value ŷi1i2:::in as a function f of contributions
from various higher level group-bys as:

ŷi1i2:::in = f(
G(irjdr2G)jG � fd1; d2; : : : dng) (1)

We will refer to the 
 terms as the coe�cients of the model equation. The way
these coe�cients are derived is explained in Section 3.4. The di�erent functional
forms function f can take is discussed in Section 3.3.

We clarify Eq. 1 by illustrating for the case of a cube with three dimensions
A;B;C. The anticipated value ŷijk for the ith member of dimension A, jth
member of dimension B and kth member of dimension C, is expressed as a
function of seven terms obtained from each of the seven group-bys of the cube
as:

ŷijk = f(
; 
Ai ; 

B
j ; 


C
k ; 


AB
ij ; 
BCjk ; 
ACik )

The absolute di�erence between the actual value, yi1i2:::in and the anticipated
value ŷi1i2:::in is termed as the residual ri1i2:::in of the model. Thus,

ri1i2:::in = jyi1i2:::in � ŷi1i2:::in j :

Intuitively, any value with a relatively large value of the residual is an excep-
tion. A statistically valid de�nition of \relatively large" requires us to scale the
values based also on the anticipated standard deviation �i1i2:::in associated with
the residuals. Thus, we call a value an exception if the standardized residual,
si1i2:::in , de�ned as

si1i2:::in =
jyi1i2:::in � ŷi1i2:::in j

�i1i2:::in
(2)

is higher than some threshold � . We use � = 2.5 corresponding to a probability
of 99% in the normal distribution. In Section 3.5 we discuss how we estimate the
standard deviations.

3.2 Exceptions at Higher Levels of Group-bys

Exceptions at higher level group-bys of the cube can be found by separately
�tting the model Eq. 1 on aggregated values at each group-by of the data cube
using di�erent values of n. For instance, for a cube with three dimensions A, B,
C we will need one equation at the most detailed level ABC where n = 3, three
equations for group-bys AB, BC and CA where n = 2, and three equations for
group-bys A, B and C where n = 1. The OLAP user speci�es the aggregate
function to be used for summarizing values at higher levels of the cube. For
instance, a user might specify \sum" or \average" of sales as the aggregate
function. Accordingly, exceptions in \total" or \average" sales will be reported
at various group-bys of the cube.



3.3 Functional forms of f

The function f in Eq. 1 can take a form which is:

{ Additive: the function f returns the sum of its arguments.
{ Multiplicative: the function f returns the product of its arguments.

Other (more complex) functional forms for f are also possible | most of them
involving di�erent mixtures of additive and multiplicative terms [HMJ88]. A
signi�cantly di�erent approach in this category is the one suggested in [Man71]
where factor analytic models like the singular value decomposition [CL86] are
used to �t a model based on a mixture of additive and multiplicative terms. The
main demerit of these models is the high overhead of computing them and the
lack of generalizations of the models to more than 2-3 dimensions and hierarchies.

In our experience with OLAP datasets, the multiplicative form provided
better �t than the additive form. (See [SAM98] for an intuitive reason for this.)
For ease of calculation, we transform the multiplicative form to a linear additive
form by taking a log of original data values. We thus have

l̂i1i2:::in = log ŷi1i2:::in =
X

G�fd1 ;d2;:::dng


G(irjdr2G) (3)

For a three-dimensional cube, this equation takes the form:

l̂ijk = log ŷijk = 
 + 
Ai + 
Bj + 
Ck + 
ABij + 
BCjk + 
ACik :

3.4 Estimating model coe�cients

We now discuss how we estimate the coe�cients of the model equation. Two
possible approaches are:

1. Mean-based estimates: For deriving these estimates we assume the loga-
rithms of the values are distributed normally with the same variance. The
following approach yields the least-squares estimates in that case [HMT83]:
{ 
 = `+:::+ which is the grand mean or average. Note that a \+" in the
ith index denotes an aggregation along the ith dimension.

{ 
Ar

ir
= `+::+ir+::+� 
 where `+::+ir+::+ is the mean over all values along

irth member of dimension Ar. Thus, 

Ar

ir
denotes how much the average

of the values along irth member of dimension Ar di�ers from the overall
average.

{ (
)ArAs

iris
= `+::+ir+::+is+::+ � 
Ar

ir
� 
As

is
� 
.

In general, the coe�cients corresponding to any group-by G are obtained by
subtracting from the average ` value at group-by G all the coe�cients from
higher level group-bys. Intuitively, the coe�cients re
ect an adjustments to
the mean of the corresponding group-by after all higher-level adjustments are
taken into account. If a user is navigating the data cube top-down, then the
coe�cients re
ect how di�erent the values at more detailed levels are, based
on the general impressions formed by looking at higher level aggregates. This
helps provide easy grasp of why certain numbers are marked exceptions.



2. Other robust estimates: The main shortcoming of the mean-based approach
is that it is not robust in the presence of extremely large outliers. Therefore,
a number of methods including the median polish method [HMJ88] and the
square combining method [HMJ88] have been proposed. These are all based
on using robust estimates of central tendency like \median" or \trimmed-
mean" instead of \mean" for calculating the coe�cients. Trimmed-mean of
a set of values is de�ned as the mean of the values left after a certain fraction
of the extreme values (largest and smallest) have been trimmed o�.

We used the 75% trimmed-mean where 25% of the extreme values are trimmed
o� and the mean is taken of the middle 75% numbers. By dropping 25% of the
extreme numbers, we make the method robust to outliers.

3.5 Estimating standard deviation

In classical Analysis of Variance (ANOVA) methods [Mon91], the standard devi-
ation for all the cells is assumed to be identical. The variance (square of standard
deviation) is estimated as the sum of squares of the residuals divided by the num-
ber of entries. We found that this method provides poor �ts on OLAP data. In
the analysis of contingency tables [BFH75], where cell entries represent counts,
the Poisson distribution is assumed. This assumption implies that the variance
is equal to the mean. When the entries are not counts (e.g., large dollar values),
this typically leads to an underestimate of the variance.

The method we use for estimating variance is based on a slight modi�cation
of the previous models. We model the variance as a power � of the mean value
ŷi1:::in as:

�2i1i2:::in = (ŷi1i2:::in)
� :

To calculate � we use the maximum likelihood principle [CL86] on data assumed
to be distributed normally with the mean value ŷi1i2:::in . According to the latter,
one can derive that the estimated value of � must satisfy:

X (yi1i2:::in � ŷi1i2:::in)
2

(ŷi1i2:::in)
�

� log ŷi1i2:::in �
X

log ŷi1i2:::in = 0 : (4)

The method we used for solving the equation to �nd � is discussed in [SAM98].

3.6 Summarizing exceptions

As discussed in Section 2, we need to summarize exceptions in lower levels of the
cube as single values at higher levels of cube. We present concise de�nitions of
the SelfExp,InExp and PathExp quantities we associate with each cell for this
purpose. In [SAM98] more formal de�nitions appear.

SelfExp: denotes the exception value of the cell. This quantity is de�ned as
the scaled absolute value of the residual de�ned in Eq. 2 with a cut-o� threshold
of � .



InExp: denotes the total degree of surprise over all elements reachable by
drill-downs from this cell. We de�ne it formally as the maximum SelfExp value
over all cells underneath this cell.

PathExp: denotes the degree of surprise to be anticipated if drilled down
along a particular path for each possible drill down path from the cell. We de�ne
PathExp as the maximum of the SelfExp over all cells reachable by drilling down
along that path.

4 Computation Techniques

At �rst glance, our approach may appear unrealizable in practice because of the
apparent high cost of computing exceptions at every cell of every group-by of
the cube. In this section, we present fast computation techniques that make our
approach feasible for large OLAP databases. There are three logical phases in
the computation of exceptions in the entire cube:

1. The �rst phase involves the computation of the aggregate values (as speci�ed
by the user-provided aggregate function) over which exceptions will be found
at each group-by of the cube. This is essentially the problem of cube com-
putation and e�cient computation techniques for this problem have been
developed in [AAD+96].

2. The next phase is model �tting, i.e., �nding the coe�cients of the model
equation and using them to �nd the residuals as discussed in Section 3.1.

3. The �nal phase involves summarizing exceptions found in the second phase
as discussed in Section 3.6. Computationally, this phase is similar to phase
1 with a few di�erences as discussed in [SAM98].

4.1 Model �tting

In general, we need to �t separate equations for di�erent group-bys of the cube
as discussed in Section 3.2. We will �rst consider the scenario where a single
equation is �t on the base level data. Later in Section 4.2, we will discuss how to
simultaneously �t multiple equations, one for each of the group-bys of the cube.

We �rst present a method called UpDown that is directly based on Eq. 3
and later present improvements.

The UpDown Method Recall from Section 3.4 that the coe�cients at each
group-by G of the cube is equal to the average value at G minus the sum of the
coe�cients of all group-bys that are subsets of G. Thus, an e�cient way to com-
pute the coe�cients is the following two pass approach: First in the up-phase,
compute the average ` value (call it avg-l) at each group-by starting from the
most detailed group-by. This is computationally similar to the cube computa-
tion of phase 1 where we compute the user speci�ed aggregate function (call
it user-agg). Thus, phase-1 and the up-phase of phase 2 can be combined to



save on the disk scan and sorting costs. Then in the down-phase, subtract from
each group-by G the coe�cients of all its subsets starting from the least detailed
group-by (ALL).

Find-coe�cients

Up-phase:

For each group-by G starting from the most detailed group-by
Compute the user-agg and avg-l values from one of its parents

Down-phase:

For each group-by G starting from the least detailed
Compute coe�cient at G by subtracting from avg-l values, coe�cients

from all group-bys H where H � G.

Example: Consider cube ABC. We �rst compute the average value for each
of the 23� 1 = 7 group-bys of the cube by starting from the ABC group-by and
computing the average at AB, AC and BC from ABC, computing the average
at A from one of AB or AC and so on, using the cube computation methods of
[AAD+96]. We then compute the coe�cient starting from ALL. The coe�cient
of each member of group-by A is the average value at the member minus the
coe�cient of its parent ALL, the coe�cients at AB is the average at AB minus
the coe�cients at A, B and ALL and so on. Finally, we subtract from the average
` value at ABC coe�cients at AB;AC;BC;A;B;C and ALL.

Analysis The down-phase is computationally rather intensive because, in gen-
eral, for computing the coe�cients of a n attribute group-by we need to sub-
tract coe�cients from 2n � 1 other group-bys. This is equivalent to joining the
n-attribute group-by with 2n�1 other group-bys. When the size of these group-
bys is large, computing so many multi-attribute joins per group-by can incur
large sorting and comparison costs. This straightforward computation can be
improved further as discussed in [SAM98].

Rewriting We now discuss further ways of speeding up computation by rewrit-
ing Eq. 3. Instead of the 2n� 1 terms in Eq. 3, we express the expected value as
a sum of n terms as follows:

^̀
i1:::in = g1 + : : :+ gn; where gr = avgir (`i1:::in � g1 � : : :� gr�1) (5)

As an example, consider a cube with three dimensions A;B;C.

^̀
ijk = g1ij + g2ik + g3jk; where;

g1ij = avgk(`ijk)

g2ik = avgj(`ijk � g1ij)

g3jk = avgi(`ijk � g1ij � g2ik):

The coe�cients from the original Eq. 3 can be rewritten in terms of the new
coe�cients as:

rijk = `ijk � (g1ij + g2ik + g3jk)




ij = g1ij � g1i � g1j ; where g
1
i = avgj(g

1
ij); g

1
j = avgi(g

1
ij � g1i );


ik = g2ik � g2k; where g
2
k = avgi(g

2
ik);


kj = g3jk


i = g1i � g1; where g1 = avgi(g
1
i )


j = g1j


k = g2k


 = g1

Lemma1. Equations 3 and 5 yield the same set of residuals when the cube
contains no missing data. [Proof appears in [SAM98].]

When a cube does contain missing data, the residuals could di�er depend-
ing on the number of missing values. One should evaluate the coe�cients itera-
tively ([HMJ88], chapter 4) for producing accurate least squares �t in such cases.
However, these methods are not practical for our goal of pre-mining an entire
large database since they require multiple passes (often 10 or more) of data. Our
implementation ignores the missing values in the calculation of the coe�cients in
both equations by calculating the average only over the values actually present.

Computing with Eq. 5 The rewritten formula can be computed as follows.
First compute g1 by averaging the starting `i1:::in values along dimension in,
subtract values g1 from the original ` values, average the subtracted value along
dimension in�1 to compute g2, subtract the values at g2 from the modi�ed `

values and so on until all dimensions are aggregated. The �nal ` value directly
gives us the residual. Next, compute the other coe�cients of the equation by
recursively repeating the process for higher level aggregates on the average g

values just calculated. These operations can be overlapped with the computation
of the user-agg function of phase-1 as follows:

Compute(G)
Mark G as computed.
For each immediate child H of G not marked computed

Compute and store the user-agg and avg-g values at H from G

Subtract the avg-g value at H from G

For each H above
Compute(H) /* on the avg-g values. */

Initial call: Compute(Base level cube)

Example In Figure 6 we show the example of a three attribute group-by and
the sequence of computations needed for getting its coe�cients and residuals.
An upward arrow denotes the averaging phase and a downward arrow denotes
the subtraction phase. The numbers beside each edge denotes the order in which
these operations are performed. We �rst average ABC along C to obtain AB,
subtract the values at AB from ABC, average ABC along B to obtain AC, and
so on until BC is subtracted from ABC. Next, we compute the coe�cient at AB



by averaging its g values along dimension B to obtain A, subtract out the results
from AB and so on. When computing coe�cient at AC we do not average and
subtract along A because A has already been computed by averaging AB.
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Figure6. Fitting single equation for a
three-attribute cube
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Figure7. Fitting multiple equations for
a three-attribute cube

Bene�ts of rewriting The advantage of rewriting Eq. 3 into Eq. 5 as above is
three fold. First we can compute the residuals of a k-dimensional cube by joining
it with at most k other group-bys instead of 2k � 1 group-bys as in Eq. 3, an
exponential di�erence in the number of join (subtraction) operations. Second,
we can compute the residuals the same time as we compute the aggregate values
in phase 1 and thus save on the sorting and comparison costs. Finally, there is no
additional sorting cost beyond cube computation since, unlike in the UpDown
method, the subtraction operation is followed immediately after the aggregation
operation. Thus, not only are the number of join operations exponentially smaller
but also the cost of each join is signi�cantly reduced since the joins require the
same sorting order as the aggregation that precedes it.

Alternative Rewritings There are other ways in which we could have rewrit-
ten Eq.3. For instance, for n = 3 another way of rewriting the equation is:

^̀
ijk = gABij + 
Ck + 
ACk + 
BCk ;where

gABij = avgk(`ijk)

The above equation uses four terms whereas Eq. 5 requires only three.
The goal in rewriting the equation in terms of as few coe�cients as possible

is to reduce the computation cost. Eq. 5 involves the fewest number of terms
in each equation. It is because any equation equivalent to Eq. 3 must contain
at least n terms since we must have at least one term from each of the n � 1
dimensional group-bys.



4.2 Simultaneous computation of multiple equations

We can adapt our method for �tting single equations to the case where we
�t simultaneously multiple equations | one for each group-by of the cube. We
proceed bottom up and �rst compute the residuals for the bottom-most group-by
using the aggregation and subtraction operations with respect to its immediate
children group-bys as in the single equation case. At the end of this, the residuals
for the bottom-most group-by are already computed. Thus, we can drop the
g terms calculated so far and start to �t the equations of the n � 1 attribute
group-bys on the aggregated function user-agg. Each of these n�1 dimensional
group-bys can now be treated independently and we can recursively �t equations
for each group-by of the cube as shown in the pseudo-code below.

ComputeMulti(G)
For each immediate child H of G

Compute the avg-g values at H by aggregating G
If G is the smallest parent of H

also, compute and store user-agg function along with above step
Subtract the avg-g value at H from G

For each H whose user-agg function computed above
ComputeMulti(H) /* on the user-agg function values. */

Initial call: ComputeMulti(Base level cube)

Note the two key di�erences between the routine Compute() for the single
equation case and ComputeMulti() for the multi equation case. First, for each
group-by all of its immediate children are used instead of just the un-computed
ones as in the single equation case. Second, for each group-by we start from the
aggregate function value for that group-by rather than the g values computed
from the previous group-by.

Example Figure 7 shows the sequence of aggregation and subtraction opera-
tions that happen when �tting multiple equations using the rewrite procedure.

5 Conclusion

We developed a novel method of e�ectively navigating large OLAP data cubes.
Our method guides the user to interesting regions exhibiting anomalous behav-
ior using pre-computed exceptions. This method enhances a user's capability
of discovering interesting areas in the data compared with the current manual
discovery.

We presented the statistical foundation of our methodology for identifying
exceptions, which was chosen after considering a number of other competing
techniques and suitably adapted so as to best match the requirements of OLAP
datasets. The coe�cients at di�erent levels of the cube have the property that
they re
ect adjustments to the combined average value obtained from higher
level aggregations of the cube. As the user typically navigates the data cube
top-down, this enables the user to very naturally capture the context in which



the value was declared an exception. In [SAM98] we present how our model
handles hierarchies and ordered dimensions like time.

We devised methods of e�ciently computing exceptions. Novel rewriting
techniques are used to reduce the cost of model �tting and modifying the com-
putation 
ow so as to mesh exception �nding with cube computation. Our ex-
periments (detailed in [SAM98]) show that these techniques yield almost a factor
of three to four performance improvement. We have applied our technique on
several real-life OLAP datasets with interesting results. In [SAM98] we report
some of these �ndings.

Future work in the area should incorporate methods for model selection and
user customization of the de�nition of exceptions.
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